【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)的解析式為f(x)= .
(1)判斷并證明f(x)在(0,+∞)上的單調(diào)性;
(2)求當(dāng)x<0時(shí),函數(shù)的解析式.
【答案】(1) f(x)在(0,+∞)上是減函數(shù)(2) f(x)=-+x(x<0).
【解析】試題分析:(1)利用單調(diào)性定義判斷f(x)在(0,+∞)上的單調(diào)性;(2) 設(shè)x<0,則-x>0,
從而有f(-x)=f(x)=-+x,得到所求的表達(dá)式.
試題解析:
(1)證明 設(shè)0<x1<x2,則
f(x1)-f(x2)=(-x1)-(-x2)= ,
∵0<x1<x2,∴x1x2>0,x2-x1>0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上是減函數(shù).
(2)解 設(shè)x<0,則-x>0,
∴f(-x)=--x,
又f(x)為偶函數(shù),
∴f(-x)=f(x)=-+x
即f(x)=-+x(x<0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若,CE∶EB=1∶4,求CE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線, .
(1)求證:對(duì),直線與圓總有兩個(gè)不同的交點(diǎn);
(2)求弦的中點(diǎn)的軌跡方程,并說(shuō)明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù),使得原上有四點(diǎn)到直線的距離為?若存在,求出的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形的對(duì)角線交于點(diǎn),邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(1)求矩形的外接圓的方程;
(2)已知直線(),求證:直線與矩形的外接圓恒相交,并求出相交的弦長(zhǎng)最短時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(﹥﹥0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)滿足:對(duì)任意、恒成立,當(dāng)時(shí),.
(1)求證在上是單調(diào)遞增函數(shù);
(2)已知,解關(guān)于的不等式;
(3)若,且不等式對(duì)任意恒成立.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】吉安一中舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng),為了解本了次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì). 按照 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的的值;
(2)在選取的樣本中,從競(jìng)賽學(xué)生成績(jī)是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的名同學(xué)中得分在的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫(xiě)出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系;
(2)求當(dāng)x為何值時(shí)y取得最大值,最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com