已知函數(shù)在與時都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥).遞減區(qū)間是(-,1)x (-¥,-) - (-,1) 1 (1,+¥) f¢(x) + 0 - 0 + f(x) 極大值 ¯ 極小值
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,當x=-時,f(x)=+c
為極大值,而f(2)=2+c,則f(2)=2+c為最大值.
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c 解得c<-1或c>2.
解析
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知的圖象與函數(shù)的圖象關于直線對稱,證明:當時,;
(3)如果且,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),(1)若函數(shù)在處與直線相切;
(1) ①求實數(shù)的值; ②求函數(shù)上的最大值;
(2)當時,若不等式對所有的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
①求函數(shù)的單調(diào)區(qū)間。
②若函數(shù)的圖象在點(2,)處的切線的傾斜角為,對任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m取值范圍
③求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知x = 1是的一個極值點
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設,試問過點(2,5)可作多少條直線與曲線相切?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com