已知函數(shù),
①求函數(shù)的單調(diào)區(qū)間。
②若函數(shù)的圖象在點(diǎn)(2,)處的切線的傾斜角為,對任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m取值范圍
③求證:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)在點(diǎn)的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),求證:在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為正實(shí)數(shù),2.7182……
(1)當(dāng)時,求在點(diǎn)處的切線方程。
(2)是否存在非零實(shí)數(shù),使恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1) 設(shè)(其中是的導(dǎo)函數(shù)),求的最大值;
(2) 證明: 當(dāng)時,求證: ;
(3) 設(shè),當(dāng)時,不等式恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,.
(Ⅰ)當(dāng) 時,求函數(shù) 的最小值;
(Ⅱ)當(dāng) 時,討論函數(shù) 的單調(diào)性;
(Ⅲ)求證:當(dāng) 時,對任意的 ,且,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)(
(1)若函數(shù)在定義域上為單調(diào)增函數(shù),求的取值范圍;
(2)設(shè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知函數(shù).
(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)時,求函數(shù)的最大值;
(Ⅲ)當(dāng),且時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給出一個不等式(x∈R),經(jīng)驗(yàn)證:當(dāng)c=1,2,3時,不等式對一切實(shí)數(shù)x都成立。試問:當(dāng)c取任何正數(shù)時,不等式對任何實(shí)數(shù)x是否都成立?若能成立,請給出證明;若不成立,請求出c的取值范圍,使不等式對任何實(shí)數(shù)x都能成立。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com