規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.
(1) 求的值;
(2) 設(shè)x>0,當(dāng)x為何值時(shí),取得最小值?
(3) 組合數(shù)的兩個(gè)性質(zhì);
. 、.
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說(shuō)明理由.

(1)-680(2)
(3)

解析試題分析:解:(1) .
(2)  .    ∵ x > 0 ,  .
當(dāng)且僅當(dāng)時(shí),等號(hào)成立. ∴ 當(dāng)時(shí),取得最小值.
(3)性質(zhì)①不能推廣,例如當(dāng)時(shí),有定義,但無(wú)意義;
性質(zhì)②能推廣,它的推廣形式是,xÎR , m是正整數(shù).
事實(shí)上,當(dāng)m=1時(shí),有.
當(dāng)m≥2時(shí).

考點(diǎn):組合數(shù)公式和性質(zhì)
點(diǎn)評(píng):主要是考查了組合數(shù)的公式的靈活的變換和求解運(yùn)算能力,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求20Cn+55=4(n+4)Cn+3n-1+15An+32中n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的展開式的二項(xiàng)式系數(shù)和為128.
(Ⅰ)求的值;
(Ⅱ)求展開式中的常數(shù)項(xiàng);
(Ⅲ)求展開式中二項(xiàng)式系數(shù)的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的展開式中,第三項(xiàng)的二項(xiàng)式系數(shù)比第二項(xiàng)的二項(xiàng)式系數(shù)大35。         
(1)求的值;      (2)求展開式中的常數(shù)項(xiàng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且(1-2xna0a1xa2x2a3x3+……+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1a2a3+……+an的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在二項(xiàng)式的展開式中,前三項(xiàng)系數(shù)的絕對(duì)值成等差數(shù)列
(1)求展開式的常數(shù)項(xiàng);
(2)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(3)求展開式中各項(xiàng)的系數(shù)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

二項(xiàng)式的降冪排列,展開后其第二項(xiàng)不大于第三項(xiàng),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分,)有6名同學(xué)站成一排,求:
(1)甲不站排頭也不站排尾有多少種不同的排法:
(2)甲、乙、丙不相鄰有多少種不同的排法.(均須先列式再用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
已知函數(shù)
(Ⅰ)將寫成的形式,并求其圖象對(duì)稱中心的橫坐標(biāo);
(Ⅱ)如果△ABC的三邊,,滿足,且邊所對(duì)的角為,試求角的范圍及函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案