【題目】設(shè)橢圓的焦點在軸上,離心率為,拋物線的焦點在軸上, 的中心和的頂點均為原點,點上,點上,

(1)求曲線, 的標(biāo)準(zhǔn)方程;

(2)請問是否存在過拋物線的焦點的直線與橢圓交于不同兩點,使得以線段為直徑的圓過原點?若存在,求出直線的方程;若不存在,說明理由.

【答案】(1) ;(2)不存在.

【解析】試題分析:(1)利用待定系數(shù)法設(shè)的方程為,根據(jù)離心率和點上,列出方程組,解出,故得其方程,根據(jù)題意可設(shè)的方程為,由可得最后結(jié)果;(2)將以線段為直徑的圓過原點等價轉(zhuǎn)化為,假設(shè)存在,首先驗證斜率不存在時不滿足題意,當(dāng)斜率不存在時,聯(lián)立直線與橢圓的方程,結(jié)合韋達定理可得結(jié)果.

試題解析:(1)設(shè)的方程為,則.所以橢圓的方程為.點上,設(shè)的方程為,則由,得.所以拋物線的方程為.

(2)因為直線過拋物線的焦點.當(dāng)直線的斜率不存在時,點,或點,顯然以線段為直徑的圓不過原點,故不符合要求;

當(dāng)直線的斜率存在時,設(shè)為,則直線的方程為,

代入的方程,并整理得.

設(shè)點,則

.

因為以線段為直徑的圓過原點,所以,所以,所以,所以.化簡得,無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值并估計這100名考生成績的平均分;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點到坐標(biāo)原點的距離和它到直線的距離之比是一個常數(shù)

(1)求點的軌跡;

(2)若時得到的曲線是,將曲線向左平移一個單位長度后得到曲線,過點的直線與曲線交于不同的兩點,過的直線分別交曲線于點,設(shè), , ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,以極點為坐標(biāo)原點,極軸為的正半軸建立平面直角坐標(biāo)系.

(1)求的參數(shù)方程;

(2)已知射線,將逆時針旋轉(zhuǎn)得到,且交于兩點, 交于兩點,求取得最大值時點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)(
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時,求函數(shù)的極值點;

(2)若函數(shù)在區(qū)間上恒有,求實數(shù)的取值范圍;

(3)已知,且,在(2)的條件下,證明數(shù)列是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).

(1)設(shè)曲線處的切線為,若與點的距離為,求的值;

(2)若對于任意實數(shù), 恒成立,試確定的取值范圍;

(3)當(dāng)時,函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案