已知雙曲線的離心率為,右準(zhǔn)線方程為,
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在以雙曲線C的實軸長為直徑的圓上,求m的值.
(1);(2).

試題分析:(1)因為這是雙曲線的標(biāo)準(zhǔn)方程,故由雙曲線的幾何性質(zhì)知,這樣就可求出雙曲線方程;(2)這是直線與雙曲線相交,且與相交弦中點(diǎn)有關(guān)問題,一般方法就是把直線方程與雙曲線方程聯(lián)立方程組,消去得關(guān)于的方程,再由韋達(dá)定理得,如果記AB中點(diǎn)為,則,從而可把中點(diǎn)坐標(biāo)用參數(shù)表示出來了,最后利用中點(diǎn)M在圓上,可求出值.
試題解析:(1)由已知得,解得,∴
∴雙曲線方程為.                4分
(2)以雙曲線實軸為直徑的圓的方程是:,把代入雙曲線方程劉:
,令的中點(diǎn),則有:
 ,,代入圓方程
中得: ,所以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右頂點(diǎn)分別為、,離心率.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點(diǎn)C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若焦點(diǎn)在軸上的橢圓 過點(diǎn),且其長軸長等于圓的直徑.
(1)求橢圓的方程;
(2)過點(diǎn)作兩條互相垂直的直線,與圓交于兩點(diǎn),交橢圓于另一點(diǎn),設(shè)直線的斜率為,求弦長;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,是其左右焦點(diǎn),離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若、分別是橢圓長軸的左右端點(diǎn),為橢圓上動點(diǎn),設(shè)直線斜率為,且,求直線斜率的取值范圍;
(3)若為橢圓上動點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn),且垂直于橢圓的長軸,動直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為雙曲線的左焦點(diǎn),在軸上點(diǎn)的右側(cè)有一點(diǎn),以為直徑的圓與雙曲線左、右兩支在軸上方的交點(diǎn)分別為,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,,.若以為焦點(diǎn)的橢圓經(jīng)過點(diǎn),則該橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案