【題目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O為坐標(biāo)原點(diǎn),a≠0,設(shè)f(x)=+b,b>a. (1)若a>0,寫(xiě)出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)的定義域?yàn)閇 ,π],值域?yàn)閇2,5],求實(shí)數(shù)a與b的值.
【答案】(1) ; (2)或.
【解析】
(1)先化簡(jiǎn)函數(shù)得f(x)= 2asin +b,再求函數(shù)的單調(diào)增區(qū)間.(2)對(duì)a分類討論,利用不等式的性質(zhì)和三角函數(shù)的圖像和性質(zhì),求出函數(shù)的最大值和最小值即得a和b的值.
(1)f(x)=-2asin2x+2asinxcosx+a+b=2asin +b,
∵a>0,∴由2kπ-≤2x+≤2kπ+得,kπ-≤x≤kπ+,k∈Z.
∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間是[kπ-,kπ+](k∈Z)。
(2)x∈[,π]時(shí),2x+∈ ,sin∈
當(dāng)a>0時(shí),f(x)∈[-2a+b,a+b] ∴ ,得,
當(dāng)a<0時(shí),f(x)∈[a+b,-2a+b]
∴ ,得綜上知, 或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從5本不同的科普書(shū)和4本不同的數(shù)學(xué)書(shū)中選出4本,送給4位同學(xué),每人1本,問(wèn):
(1)如果科普書(shū)和數(shù)學(xué)書(shū)各選2本,共有多少種不同的送法?(各問(wèn)用數(shù)字作答)
(2)如果科普書(shū)甲和數(shù)學(xué)書(shū)乙必須送出,共有多少種不同的送法?
(3)如果選出的4本書(shū)中至少有3本科普書(shū),共有多少種不同的送法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標(biāo)系中,角的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合.終邊交單位圓于點(diǎn),且,將角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn),交單位圓于點(diǎn),記.
(1)若,求;
(2)分別過(guò)作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的方程,給出下列四個(gè)命題
①存在實(shí)數(shù),使得方程恰有2個(gè)不同的實(shí)根;
②存在實(shí)數(shù),使得方程恰有4個(gè)不同的實(shí)根;
③存在實(shí)數(shù),使得方程恰有5個(gè)不同的實(shí)根;
④存在實(shí)數(shù),使得方程恰有7個(gè)不同的實(shí)根
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,其左、右焦點(diǎn)分別為,上頂點(diǎn)為,為坐標(biāo)原點(diǎn),過(guò)的直線交橢圓于兩點(diǎn),.
(1)若直線垂直于軸,求的值;
(2)若,直線的斜率為,則橢圓上是否存在一點(diǎn),使得關(guān)于直線成軸對(duì)稱?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線:上總存在點(diǎn)滿足,當(dāng)的取值最小時(shí),求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù);
(1)求實(shí)數(shù)的值.
(2)試判斷函數(shù)的單調(diào)性的定義證明;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足①對(duì)于任意,都有;②;③的圖像與軸的兩個(gè)交點(diǎn)之間的距離為4.
(1)求的解析式;
(2)記
①若為單調(diào)函數(shù),求的取值范圍;
②記的最小值為,討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,且,,分別為,的中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角的大小為,求銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷售量躍居全球第二名,某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這人的手機(jī)價(jià)格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機(jī)價(jià)格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機(jī)價(jià)格在和的顧客中選取人,并從這人中隨機(jī)抽取人進(jìn)行回訪,求抽取的人手機(jī)價(jià)格在不同區(qū)間的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com