【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,,平面平面,,,,,的余弦值為,,F為BE中點,G為PD中點.
(1)求證:平面ABCD;
(2)求平面BCE與平面ADE所成角(銳角)的余弦值.
【答案】(1)答案見解析.(2)
【解析】
(1)取的中點,連結(jié),,證明,平面,,平面,然后證明平面平面,推出平面;
(2)在中,求出,說明,以所在直線為軸,所在直線為軸,為軸,建立空間直角坐標系.求出平面的一個法向量,利用空間向量的數(shù)量積求解平面與平面所成角的余弦值即可.
(1)取EC得中點H,連結(jié)FH,GH
為BE中點,
,
平面ABCD.平面ABCD,
平面ABCD
為PD中點,
平面ABCD.平面ABCD
平面ABCD
平面平面ABCD
平面FHG 平面ABCD
(2)在中,
,
,,,
又平面平面ABCD,平面平面,
平面ABCD,
以所在直線為軸,所在直線為軸,為原點建立空間直角坐標系.
,
設(shè),
,,,,
點的坐標為,
設(shè)平面的一個法向量:,
,
,令,
,
設(shè)平面的一個法向量,
,,
令,,
平面與平面所成角(銳角)的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),,(單位:百米).
(1)分別求,關(guān)于x的函數(shù)關(guān)系式;
(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.
(1)求橢圓的標準方程;
(2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,過左焦點的直線與橢圓交于,兩點,且線段的中點為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為上一個動點,過點與橢圓只有一個公共點的直線為,過點與垂直的直線為,求證:與的交點在定直線上,并求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某商場準備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從種服裝商品,種家電商品,種日用商品中,選出種商品進行促銷活動.
(Ⅰ)試求選出的種商品中至多有一種是家電商品的概率;
(Ⅱ)商場對選出的某商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得數(shù)額為元的獎券.假設(shè)顧客每次抽獎時獲獎的概率都是,若使促銷方案對商場有利,則最少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com