【題目】已知,,其中,為自然對數(shù)的底數(shù).
若函數(shù)的切線l經(jīng)過點,求l的方程;
Ⅱ若函數(shù)在為遞減函數(shù),試判斷函數(shù)零點的個數(shù),并證明你的結(jié)論.
【答案】Ⅰ;Ⅱ見解析
【解析】
Ⅰ設(shè)出切點坐標(biāo),求出切線斜率,求出切線方程即可;
Ⅱ問題等價于,記,,分別求出的最小值和的最大值,從而證明結(jié)論.
解:Ⅰ設(shè)l和的切點是,
在該點處的導(dǎo)數(shù),它是切線l的斜率,
經(jīng)過,也過切點,
的斜率又可寫為,
故,故,解得:,
故直線l的斜率為,
故l的方程是:;
Ⅱ判斷:函數(shù)的零點個數(shù)是0,
下面證明恒成立,
,故,
若在遞減,則,
因此,要證明對恒成立,
只需證明對恒成立,
考慮等價于,
記,,
先看,,
令,解得:,
令,解得:,
故在遞減,在遞增,
,
再看,.
令,解得:,
令,解得:,
故在遞增,在遞減,
.
,且兩個函數(shù)的極值點不在同一個x處,
故對恒成立,
綜上,對恒成立,
故函數(shù)函數(shù)零點是0個.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蚌埠市某中學(xué)高三年級從甲(文)、乙(理)兩個科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績的中位數(shù)是.
(1)求和的值;
(2)計算甲組位學(xué)生成績的方差;
(3)從成績在分以上的學(xué)生中隨機抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點的重新布局及建設(shè)”基本完成,市有關(guān)部門準(zhǔn)備對項目進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗收,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該項目進(jìn)行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分, 內(nèi)認(rèn)定為滿意,80分及以上認(rèn)定為非常滿意;③市民對公交站點布局的滿意率不低于60%即可進(jìn)行驗收;④用樣本的頻率代替概率.
(1)求被調(diào)查者滿意或非常滿意該項目的頻率;
(2)若從該市的全體市民中隨機抽取3人,試估計恰有2人非常滿意該項目的概率;
(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔(dān)任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點,以9個站點測得的的平均值為依據(jù),播報我市的空氣質(zhì)量.
(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學(xué)利用每周日的時間進(jìn)行社會實踐活動,以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價,設(shè)抽取到不小于180的天數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
Ⅰ討論的單調(diào)性;
Ⅱ當(dāng)時,若關(guān)于x的不等式恒成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
若函數(shù)在處的切線與直線垂直,求實數(shù)a的值;
討論函數(shù)的單調(diào)區(qū)間與極值;
若函數(shù)有兩個零點,求滿足條件的最小整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進(jìn)行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com