【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且.D為線段AC的中點(diǎn).
(1)求證:平面平面;
(2)若點(diǎn)E在線段PB上,且,求三棱錐體積的最大值.
【答案】(1)證明見解析;(2)24.
【解析】
(1)由已知先證明AC⊥OD,又PO⊥AC,從而得到AC⊥平面PDO,進(jìn)而證明平面PAC⊥平面PDO;
(2)由題意先求得△ABC面積的最大值,進(jìn)而求得三棱錐PABC體積的最大值,從而求得三棱錐EPOC體積的最大值.
(1)證明:在ΔAOC中,因?yàn)?/span>OA=OC,D為AC的中點(diǎn),所以AC⊥OD,
又PO垂直于圓O所在的平面,所以PO⊥AC;
又DO∩PO=O,所以AC⊥平面PDO;
又AC平面PAC,
所以平面PAC⊥平面PDO;
(2)由PE=PB,則
所以V三梭錐E-POC=V三棱錐C-POE=V三棱維C-POB=S三棱維P-OCB=V三棱維P-ACB
又點(diǎn)C在圓O.上,所以當(dāng)CO⊥AB時(shí),C到AB的距離最大,且最大值為6;
又AB=12,所以ΔABC面積的最大值為×12×6=36;
又三棱錐P-ABC的高為PO=6,
所以三棱錐P-ABC體積的最大值為×36×6=72;
綜上知,三棱錐E-POC體積的最大值為×72=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有________(填序號(hào))
①已知或,,則p是q的充分不必要條件;
②“函數(shù)的最小正周期為”是“”的必要不充分條件;
③中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,,,則“”是“為等腰三角形”的必要不充分條件;
④若命題“函數(shù)的值域?yàn)?/span>”為真命題,則實(shí)數(shù)a的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面所截后得到的,其中,,.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,G為的重心,過點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PB和AC,則截面的周長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,分別為三邊中點(diǎn),將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實(shí)根;命題q:方程1表示的曲線是焦點(diǎn)在x軸上的橢圓.
(1)若p是真命題,求a的取值范圍;
(2)若p∧q是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖1,是某設(shè)計(jì)員為一種商品設(shè)計(jì)的平面logo樣式.主體是由內(nèi)而外的三個(gè)正方形構(gòu)成.該圖的設(shè)計(jì)構(gòu)思如圖2,中間正方形的四個(gè)頂點(diǎn),分別在最外圍正方形ABCD的邊上,且分所在邊為a,b兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時(shí),定型該logo的最終樣式,則此時(shí)a,b的取值分別為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,長(zhǎng)方體ABCD–A1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com