【題目】設(shè)函數(shù),其中.
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,,求的取值范圍.
【答案】(1)見(jiàn)解析(2)
【解析】
分析:(1)求函數(shù)的導(dǎo)數(shù),再換元,令,對(duì)與分類討論①②③④,即可得出函數(shù)的極值的情況.
(2)由(1)可知:當(dāng)時(shí),函數(shù)在為增函數(shù),又所以滿足條件;當(dāng)時(shí),因換元滿足題意需在此區(qū)間,即;最后得到的取值范圍.
詳解:
(Ⅰ),設(shè),則,
當(dāng)時(shí),,函數(shù)在為增函數(shù),無(wú)極值點(diǎn).
當(dāng)時(shí),,
若時(shí), ,函數(shù)在為增函數(shù),無(wú)極值點(diǎn).
若時(shí),設(shè)的兩個(gè)不相等的正實(shí)數(shù)根,,且,
則
所以當(dāng),,單調(diào)遞增;當(dāng),單調(diào)遞減;
當(dāng), ,單調(diào)遞增.因此此時(shí)函數(shù)有兩個(gè)極值點(diǎn);
同理當(dāng)時(shí)的兩個(gè)不相等的實(shí)數(shù)根,,且,
當(dāng),,單調(diào)遞減,當(dāng),,單調(diào)遞增;
所以函數(shù)只有一個(gè)極值點(diǎn).
綜上可知當(dāng)時(shí)的無(wú)極值點(diǎn);當(dāng)時(shí)有一個(gè)極值點(diǎn);當(dāng)時(shí),的有兩個(gè)極值點(diǎn).
(Ⅱ)對(duì)于,
由(Ⅰ)知當(dāng)時(shí)函數(shù)在上為增函數(shù),由,所以成立.
若,設(shè)的兩個(gè)不相等的正實(shí)數(shù)根,,
且,,∴.則若,成立,則要求,
即解得.此時(shí)在為增函數(shù),,成立
若當(dāng)時(shí)
令,顯然不恒成立.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當(dāng)時(shí),求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有紅、黃、白色球各1個(gè),每次任取1個(gè),有放回地抽三次,求基本事件的個(gè)數(shù),寫出所有基本事件的全集,并計(jì)算下列事件的概率:
(1)三次顏色各不相同;
(2)三次顏色不全相同;
(3)三次取出的球無(wú)紅色或黃色.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn),而且滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費(fèi)方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)商品狀況和優(yōu)惠活動(dòng)的評(píng)價(jià)現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),商品狀況和優(yōu)惠活動(dòng)評(píng)價(jià)的2×2列聯(lián)表如下:
對(duì)優(yōu)惠活動(dòng)好評(píng) | 對(duì)優(yōu)惠活動(dòng)不滿意 | 合計(jì) | |
對(duì)商品狀況好評(píng) | 100 | 20 | 120 |
對(duì)商品狀況不滿意 | 50 | 30 | 80 |
合計(jì) | 150 | 50 | 200 |
(I)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與商品狀況好評(píng)之間有關(guān)系?
(Ⅱ)為了回饋用戶,公司通過(guò)APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購(gòu)物后,都可獲得一張優(yōu)惠券,且購(gòu)物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨(dú)立若某用戶一天使用了APP購(gòu)物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù)
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2,其中n=a+b+c+d
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com