(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積. 
 
(2)過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點. 用表示A,B之間的距離;

(1)(2)

解析試題分析:解:(1)該幾何體的高,
(2)焦點,過拋物線的焦點且傾斜角為的直線方程是

( 或  )
考點:體積公式和拋物線定義
點評:解決的關(guān)鍵是能通過三視圖還原幾何體,并能結(jié)合幾何體的體積公式求解,解析幾何的運算一般是代數(shù)的方法,聯(lián)立方程組來得到,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)拋物線的焦點為,經(jīng)過點的動直線交拋物線于點,.
(1)求拋物線的方程;
(2)若(為坐標原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準線上的一點,直線的斜率分別為.求證:
為定值時,也為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直角坐標平面上,為原點,為動點,. 過點軸于,過軸于點,. 記點的軌跡為曲線
、,過點作直線交曲線于兩個不同的點、(點之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,一條經(jīng)過點且方向向量為的直線交橢圓兩點,交軸于點,且

(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點,是橢圓上動點.

(Ⅰ)求橢圓方程;
(Ⅱ)當時,求面積;
(Ⅲ)求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心在坐標原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,焦點到相應準線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點,坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知圓的圓心為原點,且與直線相切。

(1)求圓的方程;
(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

同步練習冊答案