【題目】政府工作報(bào)告指出,2018年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2019年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制.某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)6年來(lái)的科技投入(百萬(wàn)元)與收益(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根據(jù)散點(diǎn)圖的特點(diǎn),甲認(rèn)為樣本點(diǎn)分布在指數(shù)曲線(xiàn)的周?chē),?jù)此他對(duì)數(shù)據(jù)進(jìn)行了一些初步處理,如下表:
其中,.
(1)(i)請(qǐng)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));
(ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年的收益達(dá)到2億,則科技投入的費(fèi)用至少要多少(其中)?
(2)乙認(rèn)為樣本點(diǎn)分布在二次曲線(xiàn)的周?chē),并?jì)算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲、乙兩位員工所建立的模型,誰(shuí)的擬合效果更好.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線(xiàn)方程的斜率和截距的最小二乘估計(jì)分別為,,相關(guān)指數(shù):.
【答案】(1)(i) ;(ii) 百萬(wàn)元;(2)甲.
【解析】
(1)(i)由數(shù)據(jù)可得,由指數(shù)曲線(xiàn),取對(duì)數(shù),設(shè),令,則,代入公式求解可得,進(jìn)而求解即可;
(ii)令,求解即可;
(2)由(1),將科技投入數(shù)據(jù)依次代入中得到,得到關(guān)于殘差的數(shù)據(jù),求得,利用公式求得相關(guān)指數(shù),比較即可
(1)(i),
令,
令,則,根據(jù)最小二乘估計(jì)可知:
,
從而,
故回歸方程為,即
(ii)令,則,即,
所以科技投入的費(fèi)用至少要百萬(wàn)元
(2)由(1),將科技投入數(shù)據(jù)依次代入中得到,則計(jì)算殘差:
4 | 8 | 16 | 32 | 64 | 128 | |
16 |
則,從而.
即甲建立的回歸模型擬合效果更好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),若關(guān)于的不等式恒成立,求的取值范圍;
(2)當(dāng)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是菱形,AC與BD交于點(diǎn)O,底面ABCD,點(diǎn)M為PC中點(diǎn),,,.
(1)求異面直線(xiàn)AP與BM所成角的余弦值;
(2)求平面ABM與平面PAC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求在區(qū)間上的值域;
(2)是否存在實(shí)數(shù),對(duì)任意給定的,在存在兩個(gè)不同的使得,若存在,求出的范圍,若不存在,說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車(chē)去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車(chē).每車(chē)限坐名同學(xué)(乘同一輛車(chē)的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車(chē),則乘坐甲車(chē)的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),;當(dāng)兩條棱平行時(shí),的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),.
(1)求概率;
(2)求的分布列,并求其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
(1)設(shè)表示在這塊地上種植1季此作物的利潤(rùn),求的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在軸上的橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離和為10,橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右焦點(diǎn)作與軸垂直的直線(xiàn),直線(xiàn)上存在、兩點(diǎn)滿(mǎn)足,求△面積的最小值;
(3)若與軸不垂直的直線(xiàn)交橢圓于、兩點(diǎn),交軸于定點(diǎn),線(xiàn)段的垂直平分線(xiàn)交軸于點(diǎn),且為定值,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點(diǎn),直線(xiàn): 關(guān)于點(diǎn)對(duì)稱(chēng)的直線(xiàn)為.若直線(xiàn)上存在點(diǎn)使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com