【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考二次函數(shù)的圖象過原點(diǎn),對,恒有成立,設(shè)數(shù)列滿足

(I)求證:對,恒有成立;

(II)求函數(shù)的表達(dá)式;

(III)設(shè)數(shù)列項(xiàng)和為,求的值.

【答案】(I)證明見解析;(II);(III)2018.

【解析】試題分析:

(1)左右兩側(cè)做差,結(jié)合代數(shù)式的性質(zhì)可證得,即對,恒有:成立;

(2)由已知條件可設(shè),給定特殊值,令,從而可得:,則,,從而有恒成立,據(jù)此可知,則.

(3)結(jié)合(1)(2)的結(jié)論整理計(jì)算可得,據(jù)此分組求和有:.

試題解析:

(1)(僅當(dāng)時(shí),取“=”)

所以恒有:成立;

(2)由已知條件可設(shè),則中,令,

從而可得:,所以,即

又因?yàn)?/span>恒成立,即恒成立,

當(dāng)時(shí),,不合題意舍去,

當(dāng)時(shí),即,所以,所以.

(3),

所以,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求處的切線方程;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點(diǎn)

(1)若與圓相切,求直線的方程;

(2)若點(diǎn)為圓上一點(diǎn),求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為正三角形, , 為棱的中點(diǎn).

(1)求證:平面平面;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

處取極值,在點(diǎn)處的切線方程

)當(dāng)時(shí),有唯一的零點(diǎn),求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)上存在唯一的滿足, 那么稱函數(shù)上的“單值函數(shù)”.已知函數(shù)上的“單值函數(shù)”,當(dāng)實(shí)數(shù)取最小值時(shí),函數(shù)上恰好有兩點(diǎn)零點(diǎn),則實(shí)數(shù)的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池ABCD及其矩形附屬設(shè)施EFGH,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點(diǎn)C、D、G、H在圓周上,E、F在邊CD上,且,設(shè)

1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

2當(dāng)為何值時(shí),能符合園林局的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面的菱形,側(cè)面是邊長為2的正三角形,且與底面垂直, 的中點(diǎn).

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在曲線上,過原點(diǎn),且與軸的另一個(gè)交點(diǎn)為,若線段和曲線上分別存在點(diǎn)、點(diǎn)和點(diǎn),使得四邊形(點(diǎn), , , 順時(shí)針排列)是正方形,則稱點(diǎn)為曲線完美點(diǎn).那么下列結(jié)論中正確的是( ).

A. 曲線上不存在完美點(diǎn)

B. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于

C. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于且小于

D. 曲線上存在兩個(gè)完美點(diǎn),其橫坐標(biāo)均大于

查看答案和解析>>

同步練習(xí)冊答案