【題目】某學(xué)校為了了解該校高三年級(jí)學(xué)生寒假在家自主學(xué)習(xí)的情況,隨機(jī)對(duì)該校300名高三學(xué)生寒假的每天學(xué)習(xí)時(shí)間(單位:h)進(jìn)行統(tǒng)計(jì),按照,,,,的分組作出頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算該校高三年級(jí)學(xué)生的平均每天學(xué)習(xí)時(shí)間(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表);
(Ⅱ)該校規(guī)定學(xué)習(xí)時(shí)間超過4h為合格,否則不合格.已知這300名學(xué)生中男生有140人,其中合格的有70人,請(qǐng)補(bǔ)全下表,根據(jù)表中數(shù)據(jù),能否有99.9%的把握認(rèn)為該校高三年級(jí)學(xué)生的性別與學(xué)習(xí)時(shí)長合格有關(guān)?
男生 | 女生 | 總計(jì) | |
不合格 | |||
合格 | 70 | ||
總計(jì) | 140 | 160 | 300 |
參考公式:,其中.
參考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)4.36;(Ⅱ)有99.9%的把握認(rèn)為該校高三年級(jí)學(xué)生的性別與學(xué)習(xí)時(shí)長合格有關(guān).
【解析】
(Ⅰ)根據(jù)頻率分布直方圖直接計(jì)算平均值即可;
(Ⅱ)先求出300名學(xué)生中合格的人數(shù),再補(bǔ)全表格,然后根據(jù)表格數(shù)據(jù)和公式計(jì)算,最后將與進(jìn)行比較,進(jìn)而得出結(jié)論.
(Ⅰ)高三年級(jí)學(xué)生平均每天的學(xué)習(xí)時(shí)間為:
(h);
(Ⅱ)300名學(xué)生中合格的人數(shù)為(人),
故補(bǔ)全表格如下:
男生 | 女生 | 總計(jì) | |
不合格 | 70 | 50 | 120 |
合格 | 70 | 110 | 180 |
總計(jì) | 140 | 160 | 300 |
所以,
所以有99.9%的把握認(rèn)為該校高三年級(jí)學(xué)生的性別與學(xué)習(xí)時(shí)長合格有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):
已知三類工種職工每人每年需交的保費(fèi)分別為25元25元40元,出險(xiǎn)后的賠償金額分別為100萬元100萬元50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)設(shè)A類工種職工的每份保單保險(xiǎn)公司的收益為隨機(jī)變量X(元),求X的數(shù)學(xué)期望;
(2)若該公司全員參加保險(xiǎn),求保險(xiǎn)公司該業(yè)務(wù)所獲利潤的期望值;
(3)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:
方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),若出意外,企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠付給出意外職工,且企業(yè)開展這項(xiàng)工作每年還需另外固定支出12萬元;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.
請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-5:不等式選講]
已知函數(shù)=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a<時(shí),函數(shù)g(x)=+|2x-1|有零點(diǎn),求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,拋物線與橢圓相交所得的線段長為3,橢圓的左、右焦點(diǎn)分別為,,動(dòng)點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線與的另一個(gè)交點(diǎn)為,過,分別作直線的垂線,垂足為,,與軸的交點(diǎn)為.若,,的面積成等差數(shù)列,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,已知,,,.是線段的中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,.
(1)若.
①求數(shù)列的通項(xiàng)公式;
②證明:對(duì), .
(2)若,且對(duì),有,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com