【題目】①若直線與曲線有且只有一個公共點(diǎn),則直線一定是曲線的切線;
②若直線與曲線相切于點(diǎn),且直線與曲線除點(diǎn)外再沒有其他的公共點(diǎn),則在點(diǎn)附近,直線不可能穿過曲線;
③若不存在,則曲線在點(diǎn)處就沒有切線;
④若曲線在點(diǎn)處有切線,則必存在.
則以上論斷正確的個數(shù)是( )
A.0個B.1個C.2個D.3個
【答案】B
【解析】
根據(jù)導(dǎo)數(shù)的定義,瞬時變化率的概念,以及導(dǎo)數(shù)的幾何意義,逐項判定,即可求解.
對于①中,根據(jù)函數(shù)在點(diǎn)處的切線定義:在曲線的某點(diǎn)附近取點(diǎn),并使沿曲線不斷接近,這樣直線的極限位置就是曲線在點(diǎn)的切線. 直線與曲線有且只有一個公共點(diǎn),但直線不是切線.注:曲線的切線與曲線的公共點(diǎn)不一定只有一個,例是正弦曲線的切線,但切線與曲線有無數(shù)多個公共點(diǎn),所以不正確;
對于②中,根據(jù)導(dǎo)數(shù)的定義:
(1)導(dǎo)數(shù):,
(2)左導(dǎo)數(shù):,
(3)右導(dǎo)數(shù):,
函數(shù)在點(diǎn)處可導(dǎo)當(dāng)且僅當(dāng)函數(shù)在點(diǎn)處的左導(dǎo)數(shù)和右導(dǎo)數(shù)都存在,且相等. 例如三次函數(shù)在處的切線,所以不正確;
對于③中,切線與導(dǎo)數(shù)的關(guān)系:
(1)函數(shù)在處可導(dǎo),則函數(shù)在處切線一定存在,切線方程為
(2)函數(shù)在處不可導(dǎo),函數(shù)在處切線可能存在,可能不存在,所以不正確;
對于④中,根據(jù)導(dǎo)數(shù)的幾何意義,可得曲線在點(diǎn)處有切線,則必存在,所以是正確的.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進(jìn)行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在“員工甲不是第一個檢測,員工乙不是最后一個檢測”的條件下,員工丙第一個檢測的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港灣的平面示意圖如圖所示,、、分別是海岸線、上的三個集鎮(zhèn),位于的正南方向處,位于的北偏東方向處.隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線、上分別修建碼頭、,開辟水上航線,勘測時發(fā)現(xiàn):以為圓心,為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行.
(1)能否求出集鎮(zhèn)、間的直線距離?
(2)根據(jù)勘測要求,要使、之間的直線航線最短,直線與圓應(yīng)滿足什么關(guān)系?
(3)應(yīng)怎樣確定碼頭、的位置,才能使得、之間的直線航線最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O:和點(diǎn),由圓O外一點(diǎn)P向圓O引切線,Q為切點(diǎn),且有 .
(1)求點(diǎn)P的軌跡方程,并說明點(diǎn)P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: ,對于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定空間中十個點(diǎn),其中任意四點(diǎn)不在一個平面上,將某些點(diǎn)之間用線段相連,若得到的圖形中沒有三角形也沒有空間四邊形,試確定所連線段數(shù)目的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示的等邊三角形的邊長為,是邊上的高,,分別是邊的中點(diǎn)現(xiàn)將沿折疊,使平面平面,如圖②所示.
① ②
(1)試判斷折疊后直線與平面的位置關(guān)系,并說明理由;
(2)求四面體外接球的體積與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新型冠狀病毒肺炎期間,為響應(yīng)政府號召,郴州市某單位組織了志愿者30人,其中男志愿者18人,用分層抽樣的方法從該單位志愿者中抽取5人去參加某社區(qū)的防疫幫扶活動.
(1)求從該單位男、女志愿者中各抽取的人數(shù);
(2)從抽取的5名志愿者中任選2名談此活動的感受,求選出的2名志愿者中恰有1名男志愿者的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com