已知,數(shù)列的前項(xiàng)和為,點(diǎn)在曲線上,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為,且滿足,,求數(shù)列的通項(xiàng)公式;
(3)求證:,.
(1);(2);(3)詳見解析.
解析試題分析:(1)先根據(jù)函數(shù)的解析式,由條件“點(diǎn)在曲線上”上得出與之間的遞推關(guān)系式,然后進(jìn)行變形得到,于是得到數(shù)列為等差數(shù)列,先求出數(shù)列的通項(xiàng)公式,進(jìn)而求出數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)中的結(jié)果結(jié)合已知條件得到
,兩邊同時除以,得到,構(gòu)造數(shù)列為等差數(shù)列,先求出數(shù)列的通項(xiàng)公式,然后求出,然后由與之間的關(guān)系求出數(shù)列的通項(xiàng)公式;(3)對數(shù)列中的項(xiàng)進(jìn)行放縮法
,再利用累加法即可證明相應(yīng)的不等式.
試題解析:(1)且,∴,
數(shù)列是等差數(shù)列,首項(xiàng),公差,,
,;
(2)由,,
得,,
數(shù)列是等差數(shù)列,首項(xiàng)為,公差為,
∴,,當(dāng)時,,
也滿足上式,,;
(3),
.
考點(diǎn):1.構(gòu)造等差數(shù)列求通項(xiàng);2.定義法求通項(xiàng)公式;3.放縮法證明數(shù)列不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,前n項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列前n項(xiàng)和為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,該數(shù)列的前三項(xiàng)分別加上l,l,3后順次成為等比數(shù)列的前三項(xiàng).
(I)求數(shù)列,的通項(xiàng)公式;
(II)設(shè),若恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(1)求等差數(shù)列的通項(xiàng)公式;
(2)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足:是數(shù)列的前n項(xiàng)和.數(shù)列前n項(xiàng)的積為,且
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)是否存在常數(shù)a,使得成等差數(shù)列?若存在,求出a,若不存在,說明理由;
(Ⅲ)是否存在,滿足對任意自然數(shù)時,恒成立,若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列,公差不為零,,且成等比數(shù)列;
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com