【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個(gè)數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,若,就稱甲乙“心有靈屏”.現(xiàn)任意找兩人玩這個(gè)游戲,則他們“心有靈犀”的概率為( )

A. B. C. D.

【答案】C

【解析】

本題是一個(gè)古典概型,試驗(yàn)包含的所有事件是兩人隨意猜一個(gè)數(shù)字。其中滿足條件的滿足|a-b|1的情形包括19種,列舉出所有結(jié)果,根據(jù)計(jì)數(shù)原理得到共有的事件數(shù),根據(jù)古典概型概率公式得到結(jié)果.

甲乙兩人猜數(shù)字時(shí)互不影響,故各有7種可能,故基本事件是種,“心有靈犀”的情況包括:①,即,有7種可能;②,若甲說(shuō)的是1和7時(shí),“心有靈犀”的情況各有1種,若甲說(shuō)的數(shù)字是2,3,4,5,6時(shí),各有2種,共有種,故他們“心有靈犀”概率為,故選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成個(gè)同樣大小的小正方體,從這些小正方體中任意取兩個(gè),這兩個(gè)都恰是兩面涂色的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地統(tǒng)計(jì)局就該地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500))

(1)求居民月收入在[2000,2500)的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進(jìn)一步分析,則月收入在[3000,3500)的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱中,平面于點(diǎn),點(diǎn)在棱上,滿足.

,求證:平面;

設(shè)平面與平面所成的銳二面角的大小為,若,試判斷命題的真假,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知棱柱的底面是菱形,且ABCD,F為棱的中點(diǎn),M為線段的中點(diǎn).

1)求證:ABCD

2)判斷直線MF與平面的位置關(guān)系,并證明你的結(jié)論;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,是數(shù)列的前項(xiàng)和,且

1)求,并求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,若對(duì)任意的正整數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善人居環(huán)境,某區(qū)增加了對(duì)環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應(yīng)的資金投入(萬(wàn)元)的四組對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖如圖所示,用最小二乘法得到關(guān)于的線性回歸方程.

1)求的值,并預(yù)測(cè)今年治理環(huán)境10畝所需投入的資金是多少萬(wàn)元?

2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬(wàn)元,根據(jù)(1)的結(jié)論,請(qǐng)你對(duì)該區(qū)環(huán)境治理給出一條簡(jiǎn)短的評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)直線,.點(diǎn)的坐標(biāo)為.過(guò)點(diǎn)的直線的斜率為,且與,分別交于點(diǎn),的縱坐標(biāo)均為正數(shù)).

1)求實(shí)數(shù)的取值范圍;

2)設(shè),求面積的最小值;

3)是否存在實(shí)數(shù),使得的值與無(wú)關(guān)?若存在,求出所有這樣的實(shí)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小威初三參加某高中學(xué)校的數(shù)學(xué)自主招生考試,這次考試由十道選擇題組成.得分要求是:做對(duì)一道題得分,做錯(cuò)一道題扣去分,不做得分,總得分分就算及格.小威的目標(biāo)是至少得分獲得及格.在這次考試中,小威確定他做的前六題全對(duì),記分;而他做余下的四道題中每道題做對(duì)的概率均為.考試中,小威思量:從余下的四道題中再做一道并且及格的概率;從余下的四道題中恰做兩道并且及格的概率.他發(fā)現(xiàn),只做一道更容易及格.

1)求:小威從余下的四道題中恰做三道并且及格的概率,從余下的四道題中全做并且及格的概率,求

2)由于的大小影響,請(qǐng)你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案