【題目】已知橢圓C:的離心率為,經(jīng)過點(diǎn)過點(diǎn)的直線l與橢圓C相交于A,B兩點(diǎn),且與橢圓C的左準(zhǔn)線交于點(diǎn)N.
求橢圓C的標(biāo)準(zhǔn)方程;
當(dāng)時(shí),求直線l的方程;
設(shè),求面積的最大值.
【答案】(1);(2);(3)9
【解析】
由橢圓的離心率為和經(jīng)過點(diǎn),列出方程組,求出a,b,c可得橢圓的標(biāo)準(zhǔn)方程.設(shè)直線l方程為,,,橢圓的左準(zhǔn)線方程為,得到點(diǎn)M和N的坐標(biāo),求出,將直線與橢圓聯(lián)立利用根的判別式、韋達(dá)定理、弦長公式得到AB,結(jié)合已知條件求直線l方程.設(shè)直線l方程為,存在,求出點(diǎn)到直線l的距離和弦長,計(jì)算的面積利用導(dǎo)數(shù)可求得最大值.
橢圓C:的離心率為,經(jīng)過點(diǎn).
由題意得,解得,,,
橢圓C的標(biāo)準(zhǔn)方程為.
設(shè)直線l的方程為,存在,,,
橢圓的左準(zhǔn)線方程為,,
又,,
由,得,
,,
,
,,
解得,直線l的方程為.
設(shè)直線l的方程為,存在,
則到直線l的距離,
由知,
的面積,令,,則,
,,
當(dāng)時(shí),S單調(diào)遞減,當(dāng)時(shí),S取得最大值,且最大值為9,
面積的最大值為9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)進(jìn)行自主招生時(shí),需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項(xiàng)的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:
得出下面四個(gè)結(jié)論:
①甲同學(xué)的邏輯排名比乙同學(xué)的邏輯排名更靠前
②乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
③甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前
④甲同學(xué)的閱讀表達(dá)成績排名比他的邏輯思維成績排名更靠前
則所有正確結(jié)論的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(1)設(shè)甲同學(xué)上學(xué)期間的三天中之前到校的天數(shù)為,求,,,時(shí)的概率,,,;
(2)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在之前到校的天數(shù)比乙同學(xué)在之前到校的天數(shù)恰好多”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入高三,同學(xué)們的學(xué)習(xí)越來越緊張,學(xué)生休息和鍛煉的時(shí)間也減少了.學(xué)校為了提高學(xué)生的學(xué)習(xí)效率,鼓勵(lì)學(xué)生加強(qiáng)體育鍛煉.某中學(xué)高三(3)班有學(xué)生50人.現(xiàn)調(diào)查該班學(xué)生每周平均體育鍛煉時(shí)間的情況,得到如下頻率分布直方圖.其中數(shù)據(jù)的分組區(qū)間為:
(1)求學(xué)生周平均體育鍛煉時(shí)間的中位數(shù)(保留3位有效數(shù)字);
(2)從每周平均體育鍛煉時(shí)間在 的學(xué)生中,隨機(jī)抽取2人進(jìn)行調(diào)查,求此2人的每周平均體育鍛煉時(shí)間都超過2小時(shí)的概率;
(3)現(xiàn)全班學(xué)生中有40%是女生,其中3個(gè)女生的每周平均體育鍛煉時(shí)間不超過4小時(shí).若每周平均體育鍛煉時(shí)間超過4小時(shí)稱為經(jīng)常鍛煉,問:有沒有90%的把握說明,經(jīng)常鍛煉與否與性別有關(guān)?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某出租車公司購買了140輛純電動(dòng)汽車作為運(yùn)營車輛,目前我國純電動(dòng)汽車按續(xù)航里程數(shù)R(單位:千米)分為3類,即A類:,B類:,C類:.該公司對這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
類型 | A類 | B類 | C類 |
已行駛總里程不超過10萬千米的車輛數(shù) | 10 | 40 | 30 |
已行駛總里程超過10萬千米的車輛數(shù) | 20 | 20 | 20 |
(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬千米的概率;
(2)公司為了了解這些車的工作狀況,決定抽取14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從C類車中抽取了n輛車.
①求n的值;
②如果從這n輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬千米的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次,第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,滿足.
(1)若,求的值;
(2)若時(shí),.
①求時(shí)的表達(dá)式;
②若對任意,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日上午,山東省省委、省政府在濟(jì)南召開山東省全面展開新舊動(dòng)能轉(zhuǎn)換重大工程動(dòng)員大會(huì),會(huì)議動(dòng)員各方力量,迅速全面展開新舊動(dòng)能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號(hào)召,對現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
表1:設(shè)備改造后樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 4 | 36 | 96 | 28 | 32 | 4 |
(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);
設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)根據(jù)市場調(diào)查,設(shè)備改造后,每生產(chǎn)一件合格品企業(yè)可獲利180元,一件不合格品虧損 100元,用頻率估計(jì)概率,則生產(chǎn)1000件產(chǎn)品企業(yè)大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com