【題目】進入高三,同學(xué)們的學(xué)習(xí)越來越緊張,學(xué)生休息和鍛煉的時間也減少了.學(xué)校為了提高學(xué)生的學(xué)習(xí)效率,鼓勵學(xué)生加強體育鍛煉.某中學(xué)高三(3)班有學(xué)生50.現(xiàn)調(diào)查該班學(xué)生每周平均體育鍛煉時間的情況,得到如下頻率分布直方圖.其中數(shù)據(jù)的分組區(qū)間為:

1)求學(xué)生周平均體育鍛煉時間的中位數(shù)(保留3位有效數(shù)字);

2)從每周平均體育鍛煉時間在 的學(xué)生中,隨機抽取2人進行調(diào)查,求此2人的每周平均體育鍛煉時間都超過2小時的概率;

3)現(xiàn)全班學(xué)生中有40%是女生,其中3個女生的每周平均體育鍛煉時間不超過4小時.若每周平均體育鍛煉時間超過4小時稱為經(jīng)常鍛煉,問:有沒有90%的把握說明,經(jīng)常鍛煉與否與性別有關(guān)?

附:

P(K2k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

【答案】(1)7.29;(2) ;(3)答案見解析.

【解析】試題分析:(1)根據(jù)中位數(shù)的概念得到a-6)×0.14=0.5-0.32,進而得到參數(shù)值;(2)根據(jù)古典概型的公式計算即可,先找出基本事件總數(shù)10個,再列舉出滿足條件的事件個數(shù)3個,進而得到概率值;(3)根據(jù)條件得到圖表,由公式得到K值,從而下結(jié)論.

解析:

1)設(shè)中位數(shù)為a,

因為前三組的頻率和為:(0.02+0.03+0.11×2=0.320.5

第四組的頻率為:0.14×2=0.28,所以(a-6×0.14=0.5-0.32,a=

學(xué)生周平均體育鍛煉時間的中位數(shù)是7.29

2)由已知,鍛煉時間在中的人數(shù)分別是50×0.02×2=2,

50×0.03×2=3人,分別記在2人為,,3人為,,

則隨機抽取2人調(diào)查的所有基本事件列舉為:,,,,,,,,,10個基本事件

其中體育鍛煉時間都超過2小時包含3個基本事件,所以

3)由已知可知,不超過4小時的人數(shù)為:50×0.05×2=5人,其中女生有3人,所以男生有2人,因此經(jīng)常鍛煉的女生有50×40-3=17人,男生有30-2=28

所以2×2列聯(lián)表為:

男生

女生

小計

經(jīng)常鍛煉

28

17

45

不經(jīng)常鍛煉

2

3

5

小計

30

20

50

所以

所以沒有90%的把握說明,經(jīng)常鍛煉與否與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線城市

一線城市

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

算得,,

參照附表,得到的正確結(jié)論是

A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”

B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”

C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”

D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某海濱浴場海浪的高度(米是時刻,單位:時)的函數(shù),記作:,下表是某日各時刻的浪高數(shù)據(jù):

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

1.0

1.5

經(jīng)長期觀測,的曲線可近似地看成是函數(shù),的圖象.

)根據(jù)以上數(shù)據(jù),求函數(shù)的最小正周期,振幅及函數(shù)表達式;

2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的之間,那個時間段不對沖浪愛好者開放?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),試研究函數(shù)的極值情況;

(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 對于給定的非零實數(shù),總存在非零常數(shù),使得定義域內(nèi)的任意實數(shù),都有恒成立,此時的假周期,函數(shù)上的級假周期函數(shù),若函數(shù)是定義在區(qū)間內(nèi)的3級假周期且,當(dāng) 函數(shù),若 使成立,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)的定點到定直線的距離等于,動圓過點且與直線相切,記圓心的軌跡為曲線.在曲線上任取一點,過的垂線,垂足為.

(1)求曲線的軌跡方程;

(2)記點到直線的距離為,且,求的取值范圍;

(3)判斷的平分線所在的直線與曲線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,經(jīng)過點過點的直線l與橢圓C相交于A,B兩點,且與橢圓C的左準線交于點N

求橢圓C的標準方程;

當(dāng)時,求直線l的方程;

設(shè),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.

1求證:MN⊥CD;

2若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2bxc(a,b,cR)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x(1,3)時,有f(x)≤ (x+2)2成立.

(1)證明:f(2)=2;

(2)f(-2)=0,求f(x)的表達式;

(3)設(shè)g(x)=f(x)-x,x[0,+∞),若g(x)圖象上的點都位于直線y的上方,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案