【題目】數(shù)學(xué)中有許多寓意美好的曲線,曲線被稱為“四葉玫瑰線”(如圖所示).
給出下列三個結(jié)論:
①曲線關(guān)于直線對稱;
②曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過;
③存在一個以原點(diǎn)為中心、邊長為的正方形,使得曲線在此正方形區(qū)域內(nèi)(含邊界).
其中,正確結(jié)論的序號是________.
【答案】①②
【解析】
將代入也成立得①正確;利用不等式可得,故②正確;聯(lián)立得四個交點(diǎn),滿足條件的最小正方形是以為中點(diǎn),邊長為2的正方形,故③不正確.
對于①,將代入得成立,故曲線關(guān)于直線對稱,故①正確;
對于②,因為,所以,所以,
所以曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過,故②正確;
對于③,聯(lián)立得,從而可得四個交點(diǎn),,,,
依題意滿足條件的最小正方形是各邊以為中點(diǎn),邊長為2的正方形,故不存在一個以原點(diǎn)為中心、邊長為的正方形,使得曲線在此正方形區(qū)域內(nèi)(含邊界),故③不正確.
故答案為:①②
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化、工業(yè)化進(jìn)程加速,汽車工業(yè)快速發(fā)展,國際原油供求矛盾逐步加深,全球氣候變暖日益明顯.在此背景下,以節(jié)能減排為重要目標(biāo)的新能源汽車技術(shù)不斷取得突破,并呈現(xiàn)快速突破、競相發(fā)展的態(tài)勢.在2015年10月份,國家發(fā)改委等部委在《電動汽車充電基礎(chǔ)設(shè)施發(fā)展指南(2015-2020年)》中要求,新建住宅配建停車位應(yīng)100%建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件,大型公共建筑物配建停車場、社會公共停車場建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件的車位比例不低于10%,每2000輛電動汽車應(yīng)至少配套建設(shè)一座公共充電站.
為鼓勵新能源汽車發(fā)展,國家和地方出臺了相關(guān)補(bǔ)貼政策.
附表1:2018年某市新能源汽車補(bǔ)貼政策:
純電續(xù)航里程() | 國家補(bǔ)貼(萬元/輛) | 地方補(bǔ)貼(萬元/輛) |
1.50 | 0.75 | |
2.4 | 1.2 | |
3.4 | 1.7 | |
4.5 | 2.25 | |
5 | 2.5 |
為了獲得更大的市場分額,搶占未來新能源汽車銷售先機(jī).該市對2018年各類型新能源汽車銷售占比情況進(jìn)行了調(diào)查.
附表2:2018年該市各類型新能源汽車銷售占比情況:
純電續(xù)航里程 | |||||
占比 | 5% | 20% | 35% | 25% | 15% |
(1)用2018年新能源汽車銷售占比來估計2019年的新能源汽車銷售情況,求2019年每輛新能源汽車的平均補(bǔ)貼.若該市2019年想實現(xiàn)3000萬元補(bǔ)貼,估計需要銷售新能源汽車多少量.(補(bǔ)貼政策按每輛車補(bǔ)貼=國家補(bǔ)貼+地方補(bǔ)貼,結(jié)果四舍五入保留整數(shù))
(2)該市新能源汽車促進(jìn)辦公寶為了調(diào)查新能源汽車補(bǔ)貼發(fā)放情況,希望從2018年銷售的新能漂源汽車中抽取10輛車的信息進(jìn)行回訪核實.以各類型新能源汽車銷售占比為概率.求抽到幾輛續(xù)航里程小于新能源汽車的可能性最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用2與0兩個數(shù)字排成7位的數(shù)碼,其中“20”和“02”各至少出現(xiàn)兩次(如0020020、2020200、0220220等),則這樣的數(shù)碼的個數(shù)是( )
A.54B.44C.32D.22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為F1F2,右頂點(diǎn)為A,P為橢圓C上任意一點(diǎn).已知的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于MN兩點(diǎn)(MN不是左右頂點(diǎn)),且以MN為直徑的圓過點(diǎn)A.求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列()的各項均為正整數(shù),且.若對任意,存在正整數(shù)使得,則稱數(shù)列具有性質(zhì).
(1)判斷數(shù)列與數(shù)列是否具有性質(zhì);(只需寫出結(jié)論)
(2)若數(shù)列具有性質(zhì),且,,,求的最小值;
(3)若集合,且(任意,).求證:存在,使得從中可以選取若干元素(可重復(fù)選。┙M成一個具有性質(zhì)的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過原點(diǎn),且在原點(diǎn)處的切線與直線垂直.(為自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)若對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)過A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程和離心率的大;
(2)設(shè)M,N是y軸上不同的兩點(diǎn),若兩點(diǎn)的縱坐標(biāo)互為倒數(shù),直線AM與橢圓C的另一個交點(diǎn)為P,直線AN與橢圓C的另一個交點(diǎn)為Q,判斷直線PQ與x軸的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com