【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

【答案】(1);(2).

【解析】

(1) 已知直線的極坐標方程,運用互化公式,,即可求出直角坐標方程.將曲線的參數(shù)方程進行消去參數(shù),即可得出曲線的普通方程.

(2) 利用曲線的參數(shù)方程表示出點坐標,再寫出點的直角坐標,便得出中點坐標,利用點到直線的距離公式求出點到直線的距離的最大值.

(1)∵直線的極坐標方程為,即.

,,可得直線的直角坐標方程為.

將曲線的參數(shù)方程消去參數(shù),得曲線的普通方程為.

(2)設.

的極坐標化為直角坐標為.

.

∴點到直線的距離.

,即時,等號成立.

∴點到直線的距離的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某氣象站統(tǒng)計了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門要從甲、乙兩地各隨機抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為甲、乙兩地往來溫度適宜天氣,求甲、乙兩地往來溫度適宜天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式,為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式,根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表,再根據(jù)列聯(lián)表,能否有99.9%的把握認為兩種生產(chǎn)方式的效率有差異?

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

附:,

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校需從甲、乙兩名學生中選一人參加物理競賽,這兩名學生最近5次的物理競賽模擬成績?nèi)缦卤恚?/span>

第一次

第二次

第三次

第四次

第五次

學生甲的成績(分)

80

85

71

92

87

學生乙的成績(分)

90

76

75

92

82

1)根據(jù)成績的穩(wěn)定性,現(xiàn)從甲、乙兩名學生中選出一人參加物理競賽,你認為選誰比較合適?

2)若物理競賽分為初賽和復賽,在初賽中有如下兩種答題方案:方案1:每人從5道備選題中任意抽出1道,若答對,則可參加復賽,否則被淘汰;方案2:每人從5道備選題中任意抽出3道,若至少答對其中2道,則可參加復賽,否則被淘汰.若學生乙只會5道備選題中的3道,則學生乙選擇哪種答題方案進入復賽的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是一塊半徑為4米的圓形鐵皮,現(xiàn)打算利用這塊鐵皮做一個圓柱形油桶.具體做法是從中剪裁出兩塊全等的圓形鐵皮做圓柱的底面,剪裁出一個矩形做圓柱的側(cè)面(接縫忽略不計),為圓柱的一條母線,點上,點的一條直徑上,分別與直線、相切,都與內(nèi)切.

1)求圓形鐵皮半徑的取值范圍;

2)請確定圓形鐵皮半徑的值,使得油桶的體積最大.(不取近似值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的盒子中關(guān)有蝴蝶、蜜蜂和蜻蜓三種昆蟲共11只,現(xiàn)在盒子上開一小孔,每次只能飛出1只昆蟲(假設任意1只昆蟲等可能地飛出).若有2只昆蟲先后任意飛出(不考慮順序),則飛出的是蝴蝶或蜻蜓的概率是.

(1)求盒子中蜜蜂有幾只;

(2)若從盒子中先后任意飛出3只昆蟲(不考慮順序),記飛出蜜蜂的只數(shù)為X,求隨機變量X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,.

1)求證:.

2)若M為線段上的一點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b,設兩條直線l1axby2l2x2y2平行的概率為P1,相交的概率為P2,則點P(36P1,36P2)與圓Cx2y21 098的位置關(guān)系是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{bn}是等差數(shù)列,b11,b1b2b10145.

(1)求數(shù)列{bn}的通項公式bn

(2)設數(shù)列{an}的通項anloga(其中a0a≠1).記Sn是數(shù)列{an}的前n項和,試比較Snlogabn1的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案