【題目】已知棱長都相等的正三棱錐內(nèi)接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則( )

A.以上四個圖形都是正確的
B.只有(2)(4)是正確的
C.只有(4)是錯誤的
D.只有(1)(2)是正確的

【答案】C
【解析】解:(1)當平行于三棱錐一底面,過球心的截面如(1)圖所示;
(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;
(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;
(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.
故答案選C.
【考點精析】根據(jù)題目的已知條件,利用棱錐的結構特征的相關知識可以得到問題的答案,需要掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點x0 , 且x0>0,則a的取值范圍是(
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
D.(4 ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式,某機構對“使用微

信交流”的態(tài)度進行調(diào)查,隨機抽取了人,他們年齡的頻數(shù)分布及對 “使用微信交流”贊成的人數(shù)如

下表:(注:年齡單位:歲)

年齡

頻數(shù)

贊成人數(shù)

(1))若以“年齡歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過的前提下認為“使用微信交流的態(tài)度與人的年齡有關”?

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計

贊成

不贊成

合計

(2))若從年齡在, 的別調(diào)查的人中各隨機選取兩人進行追蹤調(diào)查,記選中的人中贊成“使用微信交流”的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

附:參考數(shù)據(jù)如下:

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M經(jīng)過點A(3,0),且與直線l:x=﹣3相切,動圓圓心M的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設兩向量e1、e2滿足| |=2,| |=1, 、 的夾角為60°,若向量2t +7 與向量 +t 的夾角為鈍角,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一條光線經(jīng)過P(2,3),射在直線l:xy10,反射后穿過點Q(1,1).

(1)求入射光線的方程;

(2)求這條光線從PQ的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=2,a5=8.
(1)求{an}的通項公式;
(2)各項均為正數(shù)的等比數(shù)列{bn}中,b1=1,b2+b3=a4 , 求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)f(x)=xlnx的定義域及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖多面體, 兩兩垂直, , ,

.

() 若點在線段,求證: 平面;

()求直線與平面所成的角的正弦值;

()求銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案