【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內(nèi)所購進的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把蔬菜低價處理完,且當(dāng)天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100蔬菜在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購入6蔬菜,有4蔬菜在前8小時內(nèi)分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務(wù)回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?

2)以上述樣本數(shù)據(jù)作為決策的依據(jù).

i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅持每天購進6蔬菜,試估計該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購進蔬菜的袋數(shù)相同,試幫其設(shè)計明年的蔬菜的進貨方案,使其所獲取的平均利潤最大.

【答案】1;(2)(i元;(ii)該批發(fā)商明年每天購進蔬菜5袋,所獲平均利潤最大.

【解析】

1)通過列舉分別求出“從6人中任選2人”和“至少選中1人是以150元/袋的價格購買”的基本事件個數(shù),通過古典概型公式計算即可;

2)(i)通過頻數(shù)分布條形圖進行估算即可;(ii)分別計算購進蔬菜4袋、5袋、6袋時的每天所獲平均利潤,比較大小即可.

1)設(shè)這6人中花150元/袋的價格購買蔬菜的顧客為,

其余4人為,,.

則從6人中任選2人的基本事件為:,,,,,,,,,,,,共15.

其中至少選中1人是以150元/袋的價格購買的基本事件有:,,,,,,,,共9.

至少選中1人是以150元/袋的價格購買的概率為.

2)(i)該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值為:(元).

ii)當(dāng)購進蔬菜4袋時,每天所獲平均利潤為(元),

當(dāng)購進蔬菜5袋時,每天所獲平均利潤為(元)

當(dāng)購進蔬菜6袋時,每天所獲平均利潤為(元)

綜上,該批發(fā)商明年每天購進蔬菜5袋,所獲平均利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年4月25日-27日,北京召開第二屆“一帶一路”國際高峰論壇,組委會要從6個國內(nèi)媒體團和3個國外媒體團中選出3個媒體團進行提問,要求這三個媒體團中既有國內(nèi)媒體團又有國外媒體團,且國內(nèi)媒體團不能連續(xù)提問,則不同的提問方式的種數(shù)為 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記[x]為不超過實數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1=a,xn+1 (n∈N*).現(xiàn)有下列命題:

①當(dāng)a=5時,數(shù)列{xn}的前3項依次為5,3,2;

②對數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時總有xn=xk

③當(dāng)n≥1時,xn-1;

④對某個正整數(shù)k,若xk+1≥xk,則xk=[].

其中的真命題有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,ABCD為矩形,是以為直角的等腰直角三角形,平面平面ABCD

1)證明:平面平面PBC;

2為直線PC的中點,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)當(dāng)為自然對數(shù)的底數(shù)時,求的極小值;

2)討論函數(shù)零點的個數(shù);

3)若對任意,恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國范圍內(nèi)開始傳播,專家組認為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.

1)求一天內(nèi)被感染人數(shù)為的概率、的關(guān)系式和的數(shù)學(xué)期望;

2)該病毒在進入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.

i)求數(shù)列的通項公式,并證明數(shù)列為等比數(shù)列;

ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時,計算此時所對應(yīng)的值和此時對應(yīng)的值,根據(jù)計算結(jié)果說明戴口罩的必要性.(取

(結(jié)果保留整數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓0,稱圓心在原點,半徑為的圓是橢圓準(zhǔn)圓.若橢圓的一個焦點為,其短軸上的一個端點到的距離為

1)求橢圓的方程和其準(zhǔn)圓方程;

2)點是橢圓準(zhǔn)圓上的一個動點,過點作直線,使得與橢圓都只有一個交點.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)研究函數(shù)fx在(0π)上的單調(diào)性;

2)求函數(shù)gx)=x2+πcosx的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習(xí)冊答案