【題目】設(shè)函數(shù)(其中m,n為常數(shù))

1)當(dāng)時,對恒成立,求實數(shù)n的取值范圍;

2)若曲線處的切線方程為,函數(shù)的零點為,求所有滿足的整數(shù)k的和.

【答案】1;(2.

【解析】

1)由恒成立可知單調(diào)遞增,由此得到,進而求得結(jié)果;

2)由切線方程可確定,從而構(gòu)造方程求得;將化為,由可確定單調(diào)性,利用零點存在定理可求得零點所在區(qū)間,進而得到所有可能的取值,從而求得結(jié)果.

(1)當(dāng)時,,

當(dāng)時,,對任意的都成立,

單調(diào)遞增,

要使得對恒成立,則,解得:,

的取值范圍為.

2,解得:

,,,

顯然不是的零點,可化為,

,則,上單調(diào)遞增.

,,,

,上各有個零點,上各有個零點,

整數(shù)的取值為整數(shù)的所有取值的和為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于空間中的三條直線,有以下四個條件:①三條直線兩兩相交;②三條直線兩兩平行;③三條直線共點;④兩直線相交,第三條平行于其中一條與另一條相交.其中使這三條直線共面的充分條件有______(填正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:;

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點,已知.

(Ⅰ)證明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)國民經(jīng)濟新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為2015年開始,全面實施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:

實施項目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30.

1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?

城鎮(zhèn)居民

農(nóng)村居民

合計

經(jīng)常閱讀

100

30

不經(jīng)常閱讀

合計

200

2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點,且離心率為,設(shè)分別是為橢圓的上下頂點

1)求橢圓的方程;

2)過點軸不垂直的直線與橢圓交于不同的兩點,當(dāng)弦的中點落在四邊形內(nèi)(含邊界)時,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)fx)的單調(diào)性;

2)若函數(shù)gx)=fx)﹣lnx2個不同的極值點x1,x2x1x2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當(dāng)PA最長時,則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

同步練習(xí)冊答案