【題目】已知等差數(shù)列的前n項(xiàng)和,且滿足,,數(shù)列是首項(xiàng)為2,公比為q)的等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)正整數(shù)kt,r成等差數(shù)列,且,若,求實(shí)數(shù)q的最大值;

3)若數(shù)列滿足,,其前n項(xiàng)和為,當(dāng)時(shí),是否存在正整數(shù)m,使得恰好是數(shù)列中的項(xiàng)?若存在,求岀m的值;若不存在,說明理由.

【答案】(1);(2);(3)存在,

【解析】

1)根據(jù)等差數(shù)列的前項(xiàng)和為,且滿足,,可得數(shù)列的通項(xiàng)公式;
2)根據(jù),,成等差數(shù)列與,推導(dǎo)出,從而得出,令,則,從而可得的最大值;
3)根據(jù)題設(shè)條件可得,再利用恰好是數(shù)列中的項(xiàng),可得只能為,,利用分類思想,即可求出的值.

1)等差數(shù)列中,,

解得,,.

2)正整數(shù)k,tr成等差數(shù)列,且,若

,,

整理可得..

,,令,則1.

,.n為奇數(shù),,為遞減數(shù)列

∴當(dāng)時(shí),q取最大值.

3)由題意得.

恰好是數(shù)列中的項(xiàng)只能為,,,

第一類:若,則,所以m無解;

第二類:若,則.由題意不符合題意,符合題意.

當(dāng)時(shí),令),則,

設(shè),則,

為增函數(shù),故,為增函數(shù).,

即當(dāng)時(shí),無解,即是方程唯一解.

第三類:若,則,即

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)自主招生考生中,所有選報(bào)Ⅱ類志向的考生全部參加了數(shù)學(xué)與邏輯閱讀與表達(dá)兩個(gè)科目的考試,成績(jī)分為A,BC,DE五個(gè)等級(jí).某考場(chǎng)考生兩科的考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中數(shù)學(xué)與邏輯科目的成績(jī)?yōu)?/span>B的考生有20.

1)求該考場(chǎng)考生中閱讀與表達(dá)科目中成績(jī)?yōu)?/span>A的人數(shù);

2)若等級(jí)A,B,CD,E分別對(duì)應(yīng)5分,4分,3分,2分,1.

i)求該考場(chǎng)考生數(shù)學(xué)與邏輯科目的平均分;

ii)若該考場(chǎng)共有7人得分大于7分,其中有210分,29分,38分,從這7中隨機(jī)抽取兩人,求兩人成績(jī)之和大于等于18的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點(diǎn)處的切線與軸平行,求;

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)內(nèi)角,,所對(duì)的邊分別為,設(shè),.

1)若,求的夾角

2)若,求周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過作直線交拋物線于兩點(diǎn).

(1)求線段中點(diǎn)的軌跡;

(2)若線段的垂直平分線交對(duì)稱軸于),求的取值范圍;

(3)若直線的斜率依次取時(shí),線段的垂直平分線與對(duì)稱軸的交點(diǎn)依次為

,當(dāng)時(shí),

求: 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng),時(shí),求函數(shù)處的切線方程,并求函數(shù)的最大值;

(2)若函數(shù)的兩個(gè)零點(diǎn)分別為,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①設(shè),,則“”是“”的充分不必要條件;②若,則,使得;③為等比數(shù)列,則“”是“”的充分不必要條件;④命題“,,使得”的否定形式是“,使得 .其中正確說法的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國(guó)電子商務(wù)蓬勃發(fā)展.2016年“618”期間,某網(wǎng)購(gòu)平臺(tái)的銷售業(yè)績(jī)高達(dá)516億元人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)該網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的交易為80次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)服務(wù)滿意之間有關(guān)系”?

對(duì)服務(wù)滿意

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品滿意

80

對(duì)商品不滿意

10

合計(jì)

200

(2)若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.897

10.828

的觀測(cè)值:(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分16分)已知,,都是各項(xiàng)不為零的數(shù)列,且滿足,,其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.

1)若數(shù)列是常數(shù)列,,求數(shù)列的通項(xiàng)公式;

2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;

3)若為常數(shù),), ,求證:對(duì)任意的,數(shù)列單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊(cè)答案