設(shè)函數(shù)
(1)若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個(gè)解,求p的最小值.
(3)證明不等式:    

(1)(2)p的最小值為0(3)見解析

解析試題分析:
(1)存在性問題,只需要即可,再利用導(dǎo)數(shù)法求解f(x)的最大值(即求導(dǎo),求單調(diào)性,求極值9與端點(diǎn)值比較得出最值).
(2) p的最小值為函數(shù)g(x)的最小值,利用導(dǎo)數(shù)求函數(shù)的最小值即可(即求導(dǎo),求單調(diào)性,求極值9與端點(diǎn)值比較得出最值).
(3)利用第二問結(jié)果可以得到與不等式有關(guān)的恒等式.令.把n=1,2,3,,得n個(gè)不等式左右相加,左邊利用對數(shù)除法公式展開即可用裂項(xiàng)求和法得到不等式的左邊,即證得原式
試題解析:
(1)依題意得
,而函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/8/1erbo4.png" style="vertical-align:middle;" />
上為減函數(shù),在上為增函數(shù),則上為增函數(shù)
,即實(shí)數(shù)m的取值范圍為                4分
(2) 則
顯然,函數(shù)上為減函數(shù),在上為增函數(shù),則函數(shù)的最小值為
所以,要使方程至少有一個(gè)解,則,即p的最小值為0                8分
(3)由(2)可知: 上恒成立
所以,當(dāng)且僅當(dāng)x=0時(shí)等號成立
,則 代入上面不等式得:
,  即  
所以,,,,
將以上n個(gè)等式相加即可得到:              12分
考點(diǎn):導(dǎo)數(shù) 不等式 函數(shù)最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若存在過點(diǎn)的直線與曲線都相切,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中為常數(shù)).
(1)如果函數(shù)有相同的極值點(diǎn),求的值;
(2)設(shè),問是否存在,使得,若存在,請求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.
(3)記函數(shù),若函數(shù)有5個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,型卡車滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,其圖象與軸交于三點(diǎn),其中點(diǎn)的坐標(biāo)為
(1)求的值;
(2)求的取值范圍;
(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),函數(shù)圖像上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間(1,4)內(nèi),另一個(gè)在區(qū)間[1,4]外,求a的取值范圍;
(3)已知,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象經(jīng)過點(diǎn),且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間

查看答案和解析>>

同步練習(xí)冊答案