已知函數(shù),(其中為常數(shù)).
(1)如果函數(shù)和有相同的極值點,求的值;
(2)設(shè),問是否存在,使得,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
(3)記函數(shù),若函數(shù)有5個不同的零點,求實數(shù)的取值范圍.
(1)或;(2);(3).
解析試題分析:本題主要考查導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)求函數(shù)的極值和最值、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、求函數(shù)的零點等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,對求導(dǎo),得到有2個根,而在處有極大值,所以那2個根分別等于,得到a的值;第二問,假設(shè)存在使得,將代入得到解析式,由于,所以將問題轉(zhuǎn)化成了存在,使得,分類討論,討論拋物線的對稱軸和區(qū)間端點的大小,數(shù)形結(jié)合,得到結(jié)論;第三問,已知條件中有5個不同的零點,根據(jù)解析式的特點,知有3個不同的實根,有2個不同的實根,通過拋物線的圖形可知要使有2個不同的實根,只需,而,通過第一問得到的極值點,討論2個數(shù)的3種大小關(guān)系,結(jié)合圖象,確定a的取值范圍,a的取值范圍需保證和同時成立,還得保證這5個根互不相等.
試題解析:(1),則,
令,得或,而在處有極大值,
∴或;綜上:或. 3分
(2)假設(shè)存在,即存在,使得
,
當(dāng)時,又,故,則存在,使得
, 4分
當(dāng)即時,得,;
5分
當(dāng)即時,得, 6分
無解;綜上:. 7分
(3)據(jù)題意有有3個不同的實根,有2個不同的實根,且這5個實根兩兩不相等.\(。有2個不同的實根,只需滿足; 8分
(ⅱ)有3個不同的實根,
當(dāng)即時,在處取得極大值,而,不符合題意,舍; 9分
當(dāng)即時,不符合題意,舍;
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求的值;
(2)若函數(shù)的圖象上存在兩點關(guān)于原點對稱,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)求函數(shù)的極值點.
(3)設(shè)為函數(shù)的極小值點,的圖象與軸交于兩點,且,中點為,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在點處的切線與直線平行,求實數(shù)的值;
(2)若函數(shù)在處取得極小值,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線.
(1)若曲線C在點處的切線為,求實數(shù)和的值;
(2)對任意實數(shù),曲線總在直線:的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個零點,且是其中一個零點.
(1)求的值;
(2)求的取值范圍;
(3)設(shè),且的解集為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實數(shù)解,求實數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求p的最小值.
(3)證明不等式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com