試題分析:三條直線相交于一點,如果三條直線共面,則確定一個平面;如果三條直線不共面,則可以確定三個平面.
點評:兩條相交直線就可以確定一個平面,所以解決本小題需要分三條直線共面和不共面兩種情況.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題中假命題是
A.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行 |
B.垂直于同一條直線的兩條直線相互垂直 |
C.若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直 |
D.若一個平面內的兩條相交直線與另一個平面內的相交直線分別平行,那么這兩個平面相互平行 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱錐
中,
底面
于
,
,
,點
是
的中點.
(1)求證:側面
平面
;
(2)若異面直線
與
所成的角為
,且
,
求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知AC ⊥平面CDE, BD ∥AC ,
為等邊三角形,F(xiàn)為ED邊上的中點,且
,
(Ⅰ)求證:CF∥面ABE;
(Ⅱ)求證:面ABE ⊥平面BDE;
(Ⅲ)求該幾何體ABECD的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如下圖所示,在直三棱柱
ABC-
A1B1C1中,
AC=3,
BC=4,
AB=5,
AA1=4,點
D是
AB的中點.
(1)求證:
AC⊥
BC1;
(2)求證:
AC1∥平面
CDB1;
(3)求異面直線
AC1與
B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
是邊長為2的正方形,
,且
,
為
中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)在線段
上是否存在點
,使得點
到平
面
的距離為
?若存在,確定點
的位置;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱
的底面邊長是
,體積是
,
分別是棱
、
的中點.
(1)求直線
與平面
所成的角(結果用反三角函數(shù)表示);
(2)求過
的平面與該正四棱柱所截得的多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四邊形
中,
,
,點
為線段
上的一點.現(xiàn)將
沿線段
翻折到
(點
與點
重合),使得平面
平面
,連接
,
.
(Ⅰ)證明:
平面
;
(Ⅱ)若
,且點
為線段
的中點,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,在正三棱柱ABC-A
1B
1C
1中,AB=2.若二面角C-AB-C
1的大小為60°,則異面直線A
1B
1和BC
1所成角的余弦值為
查看答案和解析>>