已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經(jīng)過一定點E,并求·的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
(1)=1.(2)見解析(3)
(1)解:令橢圓mx2+ny2=1,其中m=,n=,得所以m=,n=,即橢圓方程為=1.
(2)證明:直線AB:=1,設(shè)點P(x0,y0),則OP的中點為,所以點O、M、P、N所在的圓的方程為,化簡為x2-x0x+y2-y0y=0,與圓x2+y2作差,即直線MN:x0x+y0y=.

因為點P(x0,y0)在直線AB上,得=1,
所以x0=0,即 
得x=-,y=,故定點E ,·.
(3)解:由直線AB與圓G:x2+y2 (c是橢圓的焦半距)相離,則,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因為0<e<1,所以0<e2<3-、.連結(jié)ON、OM、OP,若存在點P使△PMN為正三角形,則在Rt△OPN中,OP=2ON=2r=c,所以≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因為0<e<1,所以≤e2<1,②.由①②得≤e2<3-,所以
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,在第一和第四象限的交點分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,點,線段的中點在拋物線上.設(shè)動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程mx2+y2=1所表示的所有可能的曲線是(  )
A.橢圓、雙曲線、圓
B.橢圓、雙曲線、拋物線
C.兩條直線、橢圓、圓、雙曲線
D.兩條直線、橢圓、圓、雙曲線、拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程的曲線即為函數(shù)的圖象,對于函數(shù),下列命題中正確的是.(請寫出所有正確命題的序號)
①函數(shù)上是單調(diào)遞減函數(shù);②函數(shù)的值域是
③函數(shù)的圖象不經(jīng)過第一象限;④函數(shù)的圖象關(guān)于直線對稱;
⑤函數(shù)至少存在一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是雙曲線的左焦點,離心率為e,過F且平行于雙曲線漸近線的直線與圓交于點P,且點P在拋物線上,則e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),左、右兩個焦點分別為F1,F2,上頂點A(0,b),△AF1F2為正三角形且周長為6.
(1)求橢圓C的標準方程及離心率;
(2)O為坐標原點,P是直線F1A上的一個動點,求|PF2|+|PO|的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xOy中,中心在原點O,焦點在x軸上的橢圓C上的點(2,1)到兩焦點的距離之和為4.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l與橢圓C分別交于AB兩點,其中點Ax軸下方,且=3.求過OA,B三點的圓的方程.

查看答案和解析>>

同步練習冊答案