已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若是邊長(zhǎng)為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.
(1)拋物線的方程為;(2)橢圓的離心率.

試題分析:(1)先根據(jù)拋物線及橢圓的幾何性質(zhì)得到點(diǎn)關(guān)于軸對(duì)稱,進(jìn)而由求得點(diǎn)的坐標(biāo),接著代入拋物線的方程可求得的值,從而可確定拋物線的方程;(2)先根據(jù)確定的橫坐標(biāo)為,進(jìn)而代入橢圓的方程可確定點(diǎn)的坐標(biāo),再將該點(diǎn)的坐標(biāo)代入拋物線,從中可得關(guān)系式,另一方面,從而得到,即,只須求解關(guān)于的方程即可得到內(nèi)的解.
試題解析:(1)設(shè)橢圓的右焦點(diǎn)為,依題意得拋物線的方程為
是邊長(zhǎng)為的正三角形,∴點(diǎn)的坐標(biāo)是
代入拋物線的方程解得,故所求拋物線的方程為
(2)∵,∴點(diǎn)的橫坐標(biāo)是代入橢圓方程解得,即點(diǎn)的坐標(biāo)是
∵點(diǎn)在拋物線上,∴
代入上式整理得:
,解得
,故所求橢圓的離心率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn)),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問:..,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè):的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓為焦點(diǎn),離心率.設(shè)的一個(gè)交點(diǎn).

(1)當(dāng)時(shí),求橢圓的方程.
(2)在(1)的條件下,直線的右焦點(diǎn),與交于兩點(diǎn),且等于的周長(zhǎng),求的方程.
(3)求所有正實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點(diǎn)、,過、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過兩點(diǎn),求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 以橢圓的長(zhǎng)軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點(diǎn),軸上一點(diǎn),過圓心作直線的垂線交橢圓右準(zhǔn)線于點(diǎn).問:直線能否與圓總相切,如果能,求出點(diǎn)的坐標(biāo);如果不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1的左支上一點(diǎn)M到右焦點(diǎn)F2的距離為18,N是線段MF2的中點(diǎn),O是坐標(biāo)原點(diǎn),則|ON|等于(  )
A.4B.2 C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,過點(diǎn)且離心率為.
求橢圓的方程;
已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)滿足,連接角橢圓于點(diǎn),在軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓經(jīng)過直線和直線的交點(diǎn),若存在,求出點(diǎn),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案