【題目】天津市某高中團(tuán)委在2019124日開展了以“學(xué)法、遵法、守法”為主題的學(xué)習(xí)活動(dòng).為檢查該學(xué)校組織學(xué)生學(xué)習(xí)的效果,現(xiàn)從該校高一、高二、高三的學(xué)生中分別選取了4人,3人,3人作為代表進(jìn)行問(wèn)卷測(cè)試.具體要求:每位學(xué)生要從10個(gè)有關(guān)法律、法規(guī)的問(wèn)題中隨機(jī)抽出4個(gè)問(wèn)題進(jìn)行作答.

1)若從這10名學(xué)生中任選3人,求這3名學(xué)生分別來(lái)自三個(gè)年級(jí)的概率;

2)若這10人中的某學(xué)生能答對(duì)10道題中的7道題,另外3道題回答不對(duì),記表示該名學(xué)生答對(duì)問(wèn)題的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】12)見解析

【解析】

1)利用組合知識(shí)以及古典概型的概率公式求解即可;

2)求出隨機(jī)變量的可能取值以及相應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即可.

1)從這10名學(xué)生中任選3人,共有種選法

其中這3名學(xué)生分別來(lái)自三個(gè)年級(jí)的共有種選法

則這3名學(xué)生分別來(lái)自三個(gè)年級(jí)的概率

2)由題意可知,隨機(jī)變量的可能取值為

所以隨機(jī)變量的分布列為

數(shù)學(xué)期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析,得到如下列聯(lián)表(單位:人).

經(jīng)常使用

偶爾使用或不使用

合計(jì)

歲及以下

歲以上

合計(jì)

1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用共享單車的情況與年齡有關(guān);

2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取人,再?gòu)倪@人中隨機(jī)選出人贈(zèng)送優(yōu)惠券,求選出的人中至少有人經(jīng)常使用共享單車的概率;

ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機(jī)選取人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),橢圓與雙曲線的焦點(diǎn)相同.

(1)求橢圓與雙曲線的方程;

(2)過(guò)雙曲線的右頂點(diǎn)作兩條斜率分別為的直線,,分別交雙曲線于點(diǎn),,不同于右頂點(diǎn)),若,求證:直線的傾斜角為定值,并求出此定值;

(3)設(shè)點(diǎn),若對(duì)于直線,橢圓上總存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下說(shuō)法:

一年按365天計(jì)算,兩名學(xué)生的生日相同的概率是;買彩票中獎(jiǎng)的概率為0.001,那么買1 000張彩票就一定能中獎(jiǎng);乒乓球賽前,決定誰(shuí)先發(fā)球,抽簽方法是從1~1010個(gè)數(shù)字中各抽取1個(gè),再比較大小,這種抽簽方法是公平的;昨天沒(méi)有下雨,則說(shuō)明昨天氣象局的天氣預(yù)報(bào)降水概率是90%”是錯(cuò)誤的.

根據(jù)我們所學(xué)的概率知識(shí),其中說(shuō)法正確的序號(hào)是___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (mR)

1)當(dāng)時(shí),

①求函數(shù)x=1處的切線方程;

②求函數(shù)上的最大,最小值.

2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)證明:,直線都不是曲線的切線;

(2)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)用分段函數(shù)的形式表示函數(shù)f(x);

(2)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;

(3)在同一平面直角坐標(biāo)系中,再畫出函數(shù)g(x)= (x>0)的圖象(不用列表),觀察圖象直接寫出當(dāng)x>0時(shí),不等式f(x)> 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象如圖所示.

(1)的最小正周期及解析式;

(2)設(shè)函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案