(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線軸上的截距為,交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.
(1)(2)(3)設直線MA、MB的斜率分別為k1,k2,證明k1+k2=0即可.

試題分析:(1)設橢圓方程為,
,則,∴橢圓方程.
(2)∵直線l平行于OM,且在軸上的截距為m,又 ,
∴l(xiāng)的方程為:,
,
∵直線l與橢圓交于A、B兩個不同點,
     
∴m的取值范圍是
(3)設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可

 可得


,
∴k1+k2=0,故直線MA、MB與x軸始終圍成一個等腰三角形.
點評:本題主要考查了直線與圓錐曲線的關系的綜合問題.考查了學生轉化和化歸思想的運用,統(tǒng)籌運算的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點且斜率為1的直線交橢圓兩點,為弦的中點。
(1)求直線為坐標原點)的斜率;
(2)設橢圓上任意一點,且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標系中,橢圓的焦距為2,且過點.
求橢圓的方程;
若點分別是橢圓的左、右頂點,直線經過點且垂直于軸,點是橢圓上異于的任意一點,直線于點

(ⅰ)設直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設過點垂直于的直線為.求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為,其上的動點在準線上的射影為,若是等邊三角形,則的橫坐標是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為                                                      (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓+上,為焦點 且,則的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,的兩個頂點的坐標分別是(-1,0),(1,0),點的重心,軸上一點滿足,且.
(1)求的頂點的軌跡的方程;
(2)不過點的直線與軌跡交于不同的兩點,當時,求的關系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經過點A、B是函數(shù)圖像上的點,正半軸上的點.
(1) 求的解析式;
(2) 設為坐標原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的右焦點為點在橢圓上,以點為圓心的圓與軸相切,且同時與軸相切于橢圓的右焦點,則橢圓的離心率為         

查看答案和解析>>

同步練習冊答案