【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)已知點(diǎn)P在線段EF上,=2.求三棱錐E-APD的體積.
【答案】(1)證明詳見解析;(2).
【解析】
試題分析: 本題主要考查線面垂直的判定與性質(zhì)、空間幾何體體積等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、空間想象能力、邏輯推理能力、計(jì)算能力. 第一問,在中,利用余弦定理計(jì)算出的值,可以看出,符合勾股定理,得到,再由面面垂直的性質(zhì)定理得線面垂直,從而得,最后由線面垂直的判定定理得到結(jié)論;第二問,由線面垂直的性質(zhì)得即是錐體的高,用等體積轉(zhuǎn)化法將轉(zhuǎn)化為,用體積公式計(jì)算.
試題解析:(1)在梯形中,
∵∥,
∴∴
∴∴∵平面平面
平面平面 ,
∴
∴又∴
(2)由(1)知⊥平面
∵//, ∴且
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品店為了了解氣溫對(duì)銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出與的回歸方程;
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請(qǐng)用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.
附: 回歸方程中, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若為整數(shù),,且當(dāng)時(shí),恒成立,其中為的導(dǎo)函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,btanB+btanA=﹣2ctanB,且a=8,△ABC的面積為 ,則b+c的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ,直線l與圓C交于A,B兩點(diǎn).
(1)求圓C的直角坐標(biāo)方程及弦AB的長(zhǎng);
(2)動(dòng)點(diǎn)P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左焦點(diǎn)為F,直線y=kx(k>0)與橢圓C交于A,B兩點(diǎn),若 ,則C的離心率取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從邊長(zhǎng)為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊長(zhǎng)為x的正方形,然后折成一個(gè)無蓋的長(zhǎng)方體盒子,要求長(zhǎng)方體的高度x與底面正方形邊長(zhǎng)的比不超過正數(shù)t.
(1)把鐵盒的容積V表示為關(guān)于x的函數(shù),并指出其定義域.
(2)當(dāng)x為何值時(shí),容積V有最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com