【題目】在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 ( 為參數(shù)),以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線 的普通方程和極坐標(biāo)方程;
(2)若直線 與曲線 相交于點(diǎn) 兩點(diǎn),且 ,求證: 為定值,并求出這個(gè)定值.
【答案】
(1)
解:曲線 的普通方程為 ,
極坐標(biāo)方程為 ,
∴所求的極坐標(biāo)方程為 ;
(2)
不妨設(shè)設(shè)點(diǎn) 的極坐標(biāo)分別為 ,
則 ,即 ,
∴ ,即 (定值).
【解析】(1)已知參數(shù)方程,根據(jù)cosθ+sinθ=1,有參數(shù)方程轉(zhuǎn)化為普通方程;令
x= cosθ,y= sinθ,代入普通方程,即可得到極坐標(biāo)方程。(2)用極坐標(biāo)表示出A,B,將兩個(gè)點(diǎn)代入方程即可。
【考點(diǎn)精析】利用參數(shù)方程的定義和橢圓的參數(shù)方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)都是某個(gè)變數(shù)的函數(shù)并且對(duì)于的每一個(gè)允許值,由這個(gè)方程所確定的點(diǎn)都在這條曲線上,那么這個(gè)方程就叫做這條曲線的參數(shù)方程;橢圓的參數(shù)方程可表示為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D為圓O:x2+y2=8上的動(dòng)點(diǎn),過點(diǎn)D向x軸作垂線DN,垂足為N,T在線段DN上且滿足 .
(1)求動(dòng)點(diǎn)T的軌跡方程;
(2)若M是直線l:x=﹣4上的任意一點(diǎn),以O(shè)M為直徑的圓K與圓O相交于P,Q兩點(diǎn),求證:直線PQ必過定點(diǎn)E,并求出點(diǎn)E的坐標(biāo);
(3)若(2)中直線PQ與動(dòng)點(diǎn)T的軌跡交于G,H兩點(diǎn),且 ,求此時(shí)弦PQ的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為 .
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
(Ⅱ)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2,直角梯形AA1C1C通過直角梯形AA1B1B以直線AA1為軸旋轉(zhuǎn)得到,且使得平面AA1C1C⊥平面AA1B1B.點(diǎn)M為線段BC的中點(diǎn),點(diǎn)P是線段BB1中點(diǎn). (Ⅰ)求證:A1C1⊥AP;
(Ⅱ)求二面角P﹣AM﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲三枚不同的具有正、反兩面的金屬制品A1、A2、A3 , 假定A1正面向上的概率為 ,A2正面向上的概率為 ,A3正面向上的概率為t(0<t<1),把這三枚金屬制品各拋擲一次,設(shè)ξ表示正面向上的枚數(shù).
(1)求ξ的分布列及數(shù)學(xué)期望Eξ(用t表示);
(2)令an=(2n﹣1)cos( Eξ)(n∈N+),求數(shù)列{an}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖程序框圖,如果輸出k=5,那么空白的判斷框中應(yīng)填入的條件是( )
A.S>﹣25
B.S<﹣26
C.S<﹣25
D.S<﹣24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)十書,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com