(本小題滿分12分)
已知點是區(qū)域,()內(nèi)的點,目標函數(shù),的最大值記作.若數(shù)列的前項和為,,且點()在直線上.
(Ⅰ)證明:數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的前項和.
解:(Ⅰ)見解析;
(Ⅱ)∴
解析試題分析:(1)根據(jù)當直線過點時,目標函數(shù)取得最大值,故
進而得到的關(guān)系式,然后利用通項公式與前n項和的關(guān)系得到證明。
(2)由(Ⅰ)得,∴,根據(jù)通項公式的特點,分組求和得到結(jié)論。
解:(Ⅰ)由已知當直線過點時,目標函數(shù)取得最大值,故
∴方程為
∵()在直線上,
∴ ①
∴ ②
由①-②得, ∴,
∴
∵, ∴數(shù)列以為首項,為公比的等比數(shù)列
(Ⅱ)由(Ⅰ)得,∴
∵, ∴
∴
考點:本試題主要考查了等比數(shù)列的定義和數(shù)列的求和的綜合運用。
點評:解決該試題的關(guān)鍵是分析出線性目標函數(shù)的最優(yōu)解,然后得到,然后得到。
科目:高中數(shù)學 來源: 題型:解答題
設(shè)數(shù)列的前n項和為,已知,
(1)設(shè),證明數(shù)列是等比數(shù)列 (2)求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列的各項均為正數(shù),為其前項和,對于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),數(shù)列的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)在數(shù)列中,,(),數(shù)列的前項和為。(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)求;(3)證明:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在數(shù)列{an}中,a1=1,an+1= (n∈N*).
(Ⅰ)求a2, a3, a4;
(Ⅱ)猜想an,并用數(shù)學歸納法證明;
(Ⅲ)若數(shù)列bn= ,求數(shù)列{bn}的前n項和sn。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
(2013·東城模擬)在數(shù)列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的個位數(shù),則a2 013的值是( )
A.8 | B.6 | C.4 | D.2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com