【題目】設(shè)函數(shù),.

(1)當(dāng)時,函數(shù)有兩個極值點(diǎn),求的取值范圍;

(2)若在點(diǎn)處的切線與軸平行,且函數(shù)時,其圖象上每一點(diǎn)處切線的傾斜角均為銳角,求的取值范圍.

【答案】(1);(2)

【解析】分析:(1)求得導(dǎo)函數(shù)題意說明有兩個零點(diǎn),即有兩個解,或直線與函數(shù)的有兩個交點(diǎn),可用導(dǎo)數(shù)研究的性質(zhì)(單調(diào)性,極值等),再結(jié)合圖象可得的范圍;

(2)首先題意說明,從而有,其次時,恒成立,因此的最小值大于0,這可由導(dǎo)數(shù)來研究,從而得出的范圍.

詳解:(1) )當(dāng)時,,

所以有兩個極值點(diǎn)就是方程有兩個解,

的圖像的交點(diǎn)有兩個.

,當(dāng)時,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.有極大值

又因?yàn)?/span>時,;當(dāng)時,.

當(dāng)的圖像的交點(diǎn)有0個;

當(dāng)的圖像的交點(diǎn)有1個;

當(dāng)的圖象的交點(diǎn)有2個;

綜上.

(2)函數(shù)在點(diǎn)處的切線與軸平行,所以,因?yàn)?/span>,

所以

時,其圖像的每一點(diǎn)處的切線的傾斜角均為銳角,

即當(dāng)時,恒成立,即

,

,∴

設(shè),因?yàn)?/span>,所以,∴,

單調(diào)遞增,即單調(diào)遞增,

,當(dāng)時,

所以單調(diào)遞增;

成立

當(dāng),因?yàn)?/span>單調(diào)遞增,所以,

所以存在;

當(dāng)時,,單調(diào)遞減,所以有,不恒成立;

所以實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若不等式上恒成立,求a的取值范圍;

2)若函數(shù)恰好有三個零點(diǎn),求b的值及該函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)討論的單調(diào)性;

2)若存在3個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

,當(dāng)的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為緩解高三學(xué)生的高考壓力,經(jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動,經(jīng)過一段時間的訓(xùn)練后從該年級800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為、、、五個等級,統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問題:

(1)試估算該校高三年級學(xué)生獲得成績?yōu)?/span>的人數(shù);

(2)若等級、、、分別對應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級成績的平均分大于90分時,高三學(xué)生的考前心理穩(wěn)定,整體過關(guān),請問該校高三年級目前學(xué)生的考前心理穩(wěn)定情況是否整體過關(guān)?

(3)以每個學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對成績等級為的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:為參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).

1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù),,以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, 三件禮物隨機(jī)分成兩個包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費(fèi)用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

同步練習(xí)冊答案