右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,

(1)設(shè)點的中點,證明:平面;
(2)求二面角的大小;
(1)證明見試題解析;(2).

試題分析:(1)證線面平行,一般根據(jù)線面平行的判定定理,在平面內(nèi)找到一條與平行的直線即可.為此我們?nèi)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025023145453.png" style="vertical-align:middle;" />中點D,證明// .(2)要求二面角的大小,一般是先作出二面角的平面角,通過求這個平面角來求出二面角.由于該幾何體的三個側(cè)面都是直角梯形,易計算得,,,從而,所以。那么二面角的平面角可以直接在平面內(nèi)過點,或者作平面,垂足為,連接,由三垂線定理知,就是所作平面角。
試題解析:(1)證明:作,連

因為的中點,
所以
是平行四邊形,因此有
平面平面

(2)如圖,過作截面,分別交

,連
因為,所以,則平面
又因為,
所以,根據(jù)三垂線定理知,所以就是所求二面角的平面角.
因為,所以,故,
即:所求二面角的大小為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱中,已知平面平面,.

(1)求證:
(2)若為棱的中點,求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE平面CDE,AE=3.

(1)若的中點,求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點,,,.

(Ⅰ)求證:平面;
(Ⅱ)若點為線段的中點,求異面直線所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點.

(1)若,求證:平面平面;
(2)點在線段上,,試確定的值,使平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,面,底面是直角梯形,側(cè)面是等腰直角三角形.且,,,

(1)判斷的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點是線段上一點,當(dāng)//平面時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是三個互不重合的平面,是兩條不重合的直線,則下列命題中正確的是(   )
A.若,則
B.若,,則
C.若,則
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在下列條件下,可判斷平面與平面平行的是(     )
A.α、β都垂直于平面γ
B.α內(nèi)不共線的三個點到β的距離相等
C.l,m是α內(nèi)兩條直線且l∥β,m∥β
D.l,m是異面直線,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

同步練習(xí)冊答案