如圖,在三棱錐中,側面與底面垂直, 分別是的中點,,,.

(Ⅰ)求證:平面;
(Ⅱ)若點為線段的中點,求異面直線所成角的正切值.
(1)詳見解析;(2)

試題分析:(Ⅰ)因為中,是中位線,故,所以要證明平面,只需證明平面,因為,故只需證明,由已知側面與底面垂直且,故,從而,進而證明平面;(Ⅱ)連接,因為的中位線,則,則就是異面直線所成的角,連接,由已知得,則,在中求即可.

試題解析:(Ⅰ)分別是的中點

由①②知平面.
(Ⅱ)連接
的中點是異面直線所成的角.
等腰直角三角形,且
又平面平面,所以平面,,
. ,.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,,的中點,的中點,且為正三角形.

(1)求證:平面;
(2)若,,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在直角梯形中,,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.

(1)求證:平面平面
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四面體中,、分別是、的中點,

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,

(1)設點的中點,證明:平面;
(2)求二面角的大;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,,為的中點.

(1)求證:∥平面;
(2)求證:平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中,,的中點,分別在線段上的動點,且,,把沿折起,如下圖所示,

(Ⅰ)求證:平面
(Ⅱ)當二面角為直二面角時,是否存在點,使得直線與平面所成的角為,若存在求的長,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為直線,是兩個不同的平面,下列命題中正確的是(    )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習冊答案