精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}滿足an=3an1+3n﹣1(n∈N*,n≥2)且a3=95.
(1)求a1 , a2的值;
(2)求實數t,使得bn= (an+t)(n∈N*)且{bn}為等差數列;
(3)在(2)條件下求數列{an}的前n項和Sn

【答案】
(1)解:當n=2時,a2=3a1+8,

當n=3時,a3=3a3+33﹣1=95,

∴a2=23,

∴23=3a1+8,

∴a1=5


(2)解:當n≥2時,bn﹣bn1= (an+t)﹣ (an1+t)= (an+t﹣3an1﹣3t)= (3n﹣1﹣2t).

要使{bn}為等差數列,則必須使1+2t=0,

∴t=﹣

即存在t=﹣ ,使數列{bn}為等差數列


(3)解:∵當t=﹣ ,時,數列{bn}為等差數列,且bn﹣bn1=1,b1=

∴bn= +(n﹣1)=n+ ,

∴an=(n+ )3n+ ,

于是,Sn= ×3+ 32+…+ 3n+ ×n,

令S=3×3+5×32+…+(2n+1)3n,①

3S=3×32+5×33+…+(2n+1)3n+1,②

①﹣②得﹣2S=3×3+3×32+2×33+…+23n﹣(2n+1)3n+1,②

化簡得S=n3n+1,

∴Sn= + =

數列{an}的前n項和Sn,Sn=


【解析】(1)當n=2時,a2=3a1+8,當n=3時,a3=3a3+33﹣1=95,可得a2=23,代入即可求得a1=5;(2)由等差數列的性質可知:bn﹣bn1= (an+t)﹣ (an1+t)= (an+t﹣3an1﹣3t)= (3n﹣1﹣2t).可知:1+2t=0,即可求得t的值;(3)由等差數列的通項公式可得bn= +(n﹣1)=n+ ,求得an=(n+ )3n+ ,采用分組求和及“錯位相減法”即可求得數列{an}的前n項和Sn
【考點精析】解答此題的關鍵在于理解等差數列的通項公式(及其變式)的相關知識,掌握通項公式:,以及對數列的前n項和的理解,了解數列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】微信已成為人們常用的社交軟件,“微信運動”是微信里由騰訊開發(fā)的一個類似計步數據庫的公眾賬號.手機用戶可以通過關注“微信運動”公眾號查看自己每天行走的步數,同時也可以和好友進行運動量的或點贊.現從小明的微信朋友圈內隨機選取了40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下表:

步數

性別

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步數超過8000步被系統評定為“積極型”,否則被系統評定為“懈怠型”.

(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數超過10000步的概率;

(2)根據題意完成下面的列聯表,并據此判斷能否有90%的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列結論:①y=1是冪函數;
②定義在R上的奇函數y=f(x)滿足f(0)=0
③函數 是奇函數
④當a<0時,
⑤函數y=1的零點有2個;
其中正確結論的序號是(寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么(
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知非空集合A={x|a<x<2a+3},B={x|0<x<1}
(1)若a=﹣ ,求 A∩B
(2)若A∩B=,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數關系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知⊙C經過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,直線L:y=kx+1與⊙C相交于P,Q點.
(1)求⊙C的方程.
(2)過點(0,1)作直線L1⊥L,且L1交⊙C于M,N,求四邊形PMQN的面積最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(2,0),點B(﹣2,0),直線l:(λ+3)x+(λ﹣1)y﹣4λ=0(其中λ∈R).
(1)求直線l所經過的定點P的坐標;
(2)若直線l與線段AB有公共點,求λ的取值范圍;
(3)若分別過A,B且斜率為 的兩條平行直線截直線l所得線段的長為4 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A=R,集合B={y|y>0},下列對應關系中是從集合A到集合B的映射的是(
A.x→y=|x|
B.x→y=
C.
D.

查看答案和解析>>

同步練習冊答案