【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機,公司統(tǒng)計了消費者對這兩種型號手機的評分情況,作出如下的雷達圖,則下列說法不正確的是( )

A. 甲型號手機在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.

C. 甲型號手機在性能方面比較好.D. 乙型號手機在拍照方面比較好.

【答案】C

【解析】

評分越高,說明該方面越好;從題中數(shù)據(jù)可直接得出結(jié)果.

從圖中可得:甲型號手機在外觀方面評分為90,乙型號手機在外觀方面評分為85,故A正確;甲型號手機在系統(tǒng)方面評分為95,乙型號手機在系統(tǒng)方面評分也為95,故B正確;甲型號手機在性能方面評分為85,乙型號手機在外觀方面評分為90,故C錯誤;甲型號手機在拍照方面評分為85,乙型號手機在拍照方面評分為90,故D正確;

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體中,,,,的中點。

(Ⅰ)求證:平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項公式;

2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購物抽獎活動中,已知某10張獎券中有6張有獎,其余4張沒有獎,且有獎的6張獎券每張均可獲得價值10元的獎品.某顧客從此10張獎券中任意抽取3.

1)求該顧客中獎的概率;

2)若約定抽取的3張獎券都有獎時,還要另獎價值6元的獎品,求該顧客獲得的獎品總價值(元)的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10天,每天新增疑似病例不超過7人”,根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是( )

A. 甲地:總體均值為3,中位數(shù)為4

B. 乙地:總體均值為1,總體方差大于0

C. 丙地:總體均值為2,總體方差為3

D. 丁地:中位數(shù)為2,眾數(shù)為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機運動計步已經(jīng)成為一種新時尚.某單位統(tǒng)計了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

1)求直方圖中a的值,并由頻率分布直方圖估計該單位職工一天步行數(shù)的中位數(shù);

2)若該單位有職工200人,試估計職工一天行走步數(shù)不大于13000的人數(shù);

3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠足拉練活動,再從6人中選取2人擔(dān)任領(lǐng)隊,求這兩人均來自區(qū)間(150,170]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育局衛(wèi)生健康所對全市高三年級的學(xué)生身高進行抽樣調(diào)查,隨機抽取了100名學(xué)生,他們身高都處于五個層次,根據(jù)抽樣結(jié)果得到如下統(tǒng)計圖表,則從圖表中不能得出的信息是( )

A. 樣本中男生人數(shù)少于女生人數(shù)

B. 樣本中層次身高人數(shù)最多

C. 樣本中層次身高的男生多于女生

D. 樣本中層次身高的女生有3人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,直線不經(jīng)過橢圓上頂點,與橢圓交于,不同兩點.

1)當(dāng),時,求橢圓的離心率的取值范圍;

2)若,直線的斜率之和為,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率,左、右焦點分別為,過右焦點任作一條不垂直于坐標軸的直線l與橢圓C交于AB兩點,的周長為.

1)求橢圓C的方程;

2)記點B關(guān)于x軸的對稱點為點,直線x軸于點D.的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案