【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對(duì)任意正整數(shù),.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說(shuō)明理由;
(3)求數(shù)列前n項(xiàng)和.
【答案】(1)
(2)存在,,
(3)()
【解析】
(1)根據(jù)與的關(guān)系即可求出;
(2)假設(shè)存在實(shí)數(shù),利用等比數(shù)列的定義列式,與題目條件,比較對(duì)應(yīng)項(xiàng)系數(shù)即可求出,即說(shuō)明存在這樣的實(shí)數(shù);
(3)由(2)可以求出,所以根據(jù)分組求和法和分類討論法即可求出.
(1)因?yàn)?/span>,
當(dāng)時(shí),;
當(dāng)時(shí),.
故;
(2)假設(shè)存在實(shí)數(shù),使得數(shù)列是等比數(shù)列,數(shù)列中,,
對(duì)任意正整數(shù),.可得,且,
由假設(shè)可得,即,
則,可得,
可得存在實(shí)數(shù),使得數(shù)列是公比的等比數(shù)列;
(3)由(2)可得,則,
則前n項(xiàng)和
當(dāng)n為偶數(shù)時(shí),
當(dāng)n為奇數(shù)時(shí),
則().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:(1)雙曲線與橢圓有相同的焦點(diǎn);(2)“”是“”的必要不充分條件;(3)若向量與向量共線,則向量,所在直線平行;(4)若三點(diǎn)不共線,是平面外一點(diǎn),,則點(diǎn)一定在平面上;其中是真命題的是______(填上正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
附:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:
(1)根據(jù)散點(diǎn)圖判斷,與,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高中生在被問(wèn)及“家,朋友聚集的地方,個(gè)人空間”三個(gè)場(chǎng)所中“感到最幸福的場(chǎng)所在哪里?”這個(gè)問(wèn)題時(shí),從中國(guó)某城市的高中生中,隨機(jī)抽取了55人,從美國(guó)某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國(guó)高中生答題情況是:選擇家的占、朋友聚集的地方占、個(gè)人空間占.美國(guó)高中生答題情況是:朋友聚集的地方占、家占、個(gè)人空間占.如下表:
在家里最幸福 | 在其它場(chǎng)所幸福 | 合計(jì) | |
中國(guó)高中生 | |||
美國(guó)高中生 | |||
合計(jì) |
(Ⅰ)請(qǐng)將列聯(lián)表補(bǔ)充完整;試判斷能否有的把握認(rèn)為“戀家”與否與國(guó)別有關(guān);
(Ⅱ)從被調(diào)查的不“戀家”的美國(guó)學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再?gòu)?/span>4人中隨機(jī)抽取2人到中國(guó)交流學(xué)習(xí),求2人中含有在“個(gè)人空間”感到幸福的學(xué)生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書(shū)閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)數(shù)據(jù)表明,樣本中所有人每天用于閱讀的時(shí)間(簡(jiǎn)稱閱讀用時(shí))都不超過(guò)3小時(shí),其頻數(shù)分布表如下:(用時(shí)單位:小時(shí))
用時(shí)分組 | ||||||
頻數(shù) | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用樣本估計(jì)總體,求該市市民每天閱讀用時(shí)的平均值;
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門(mén)牽頭舉辦市讀書(shū)經(jīng)驗(yàn)交流會(huì),從這200人中篩選出男女代表各3名,其中有2名男代表和1名女代表喜歡古典文學(xué).現(xiàn)從這6名代表中任選2名男代表和2名女代表參加交流會(huì),求參加交流會(huì)的4名代表中,喜歡古典文學(xué)的男代表多于喜歡古典文學(xué)的女代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若關(guān)于的方程()恰有個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對(duì)任意的恒成立;④存在三個(gè)點(diǎn),,,使得為等邊三角形.其中真命題的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,離心離為,點(diǎn)滿足條件.
(Ⅰ)求的值.
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),記和的面積分別為、,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=Acos(ωx+φ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位長(zhǎng)度后得到函數(shù)f(x)的圖象.求:
(1)函數(shù)f(x)在上的值域;
(2)使f(x)≥2成立的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com