如圖,過拋物線y2=2px(p>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB.
(1)設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
(2)求弦AB中點(diǎn)M的軌跡方程.
(1)∵依題意可知直線OA的斜率存在且不為0
∴設(shè)直線OA的方程為y=kx(k≠0)
∴聯(lián)立方程
y=kx
y2=2px
解得xA=
2p
k2
,yA=
2p
k
(4分)
-
1
k
代上式中的k,解方程組
y=-
1
k
x
y2=2px
,解得xB=2pk2,yB=-2pk
∴A(
2p
k2
,
2p
k
),B(2pk2,-2pk)(8分)
(2)設(shè)AB中點(diǎn)M(x,y),則由中點(diǎn)坐標(biāo)公式,得
x=p(
1
k2
+k2)
y=p(
1
k
-k)
(10分)
消去參數(shù)k,得y2=px-2p2;即為M點(diǎn)軌跡的普通方程.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,, BE平分∠ABC交AC于點(diǎn)E, 點(diǎn)D在AB上,
(1)求證:AC是△BDE的外接圓的切線;
(2)若,求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1.
(Ⅰ)若過點(diǎn)C1(-1,0)的直線l被圓C2截得的弦長為
6
5
,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點(diǎn)P分別作圓C1的兩條切線PE,PF,切點(diǎn)為E,F(xiàn),求
C1E
C1F
的取值范圍;
(Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(A題)已知點(diǎn)P是圓x2+y2=4上一動點(diǎn),直線l是圓在P點(diǎn)處的切線,動拋物線以直線l為準(zhǔn)線且恒經(jīng)過定點(diǎn)A(-1,0)和B(1,0),則拋物線焦點(diǎn)F的軌跡為( 。
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F1(-
3
,0),F(xiàn)2
3
,0),動點(diǎn)R在曲線C上運(yùn)動且保持|RF1|+|RF2|的值不變,曲線C過點(diǎn)T(0,1),
(Ⅰ)求曲線C的方程;
(Ⅱ)M是曲線C上一點(diǎn),過點(diǎn)M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點(diǎn),若A、B關(guān)于原點(diǎn)對稱,求k1•k2的值;
(Ⅲ)直線l過點(diǎn)F2,且與曲線C交于PQ,有如下命題p:“當(dāng)直線l垂直于x軸時,△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=2上的動點(diǎn),PD⊥x軸,垂足為D,M為線段PD上一點(diǎn),且|PD|=
2
|MD|,點(diǎn)A、F1的坐標(biāo)分別為(0,
2
),(-1,0).
(1)求點(diǎn)M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以拋物線y2=4x的焦點(diǎn)為右焦點(diǎn)的橢圓,上頂點(diǎn)為B2,右頂點(diǎn)為A2,左、右焦點(diǎn)為F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,過點(diǎn)D(0,2)的直線l,斜率為k(k>0),l與橢圓交于M,N兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若M,N的中點(diǎn)為H,且
OH
A2B2
,求出斜率k的值;
(3)在x軸上是否存在點(diǎn)Q(m,0),使得以QM,QN為鄰邊的四邊形是個菱形?如果存在,求出m的范圍;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于直線L:y=kx+1是否存在這樣的實(shí)數(shù),使得L與雙曲線C:3x2-y2=1的交點(diǎn)A,B關(guān)于直線y=ax(a為常數(shù))對稱?若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C以雙曲線
x2
3
-y2=1
的焦點(diǎn)為頂點(diǎn),以雙曲線的頂點(diǎn)為焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點(diǎn)M,N兩點(diǎn)(M,N不是左右頂點(diǎn)),且以線段MN為直徑的圓過橢圓C左頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案