【題目】(12分)
在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離之和為4.
(1)試求點(diǎn)A的M的方程.
(2)若斜率為的直線l與軌跡M交于C,D兩點(diǎn),為軌跡M上不同于C,D的一點(diǎn),記直線PC的斜率為,直線PD的斜率為,試問(wèn)是否為定值.若是,求出該定值;若不同,請(qǐng)說(shuō)出理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)有下列幾個(gè)命題,其中正確的命題是( )
A.函數(shù)在上是增函數(shù)
B.函數(shù)在上是減函數(shù)
C.函數(shù)的單調(diào)區(qū)間是
D.已知在上是增函數(shù),若,則有
E.已知函數(shù)是奇函數(shù),則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則下列關(guān)于的說(shuō)法正確的是( )
A.最大值為1,圖象關(guān)于直線對(duì)稱
B.周期為,圖象關(guān)于點(diǎn)對(duì)稱
C.圖象關(guān)于y軸對(duì)稱,在上單調(diào)遞減
D.在上單調(diào)遞增,且為偶函數(shù)
E.在上單調(diào)遞減,且為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)圖象在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性
(3)是否存在實(shí)數(shù),對(duì)任意的 有恒成立?若存在,求出的取值范圍:若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機(jī)器人制作”是否與學(xué)生性別有關(guān),采用簡(jiǎn)單隨機(jī)抽樣的辦法在我校高一年級(jí)抽出一個(gè)有60人的班級(jí)進(jìn)行問(wèn)卷調(diào)查,得到如下的列聯(lián)表:
喜歡 | 不喜歡 | 合計(jì) | |
男生 | 18 | ||
女生 | 6 | ||
合計(jì) | 60 |
已知從該班隨機(jī)抽取1人為喜歡的概率是.
(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請(qǐng)說(shuō)明理由.
參考臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是梯形,,,底面點(diǎn)是的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若且與平面所成角的大小為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若在處取到極值,求的值;
(2)若在上恒成立,求的取值范圍;
(3)求證:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為菱形, ,側(cè)面為等腰直角三角形,,點(diǎn)為棱的中點(diǎn).
(1)求證:面面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com