【題目】已知橢圓的左右焦點(diǎn)分別為,其焦距為,點(diǎn)在橢圓上,,直線的斜率為為半焦距)·

1)求橢圓的方程;

2)設(shè)圓的切線交橢圓兩點(diǎn)(為坐標(biāo)原點(diǎn)),求證:

3)在(2)的條件下,求的最大值

【答案】1;(2)見(jiàn)解析;(3

【解析】

(1)由題意知 ,,解得 即可.

(2)(i)當(dāng)切線與坐標(biāo)軸垂直時(shí),滿足,(ii)當(dāng)切線與坐標(biāo)軸不垂直時(shí),設(shè)圓的切線為y=kx+m,得,A(x1,y1),B(x2,y2),利用,即可證明.

(3 )當(dāng)切線與坐標(biāo)軸垂直時(shí)|OA||OB|=4,當(dāng)切線與坐標(biāo)軸不垂直時(shí),由(2)知,且,即可得OA||OB|的最大值.

(1)連接,由題意知 ,

設(shè)

解得 ,

橢圓的方程為 .

(2)(i)當(dāng)切線與坐標(biāo)軸垂直時(shí),交點(diǎn)坐標(biāo)為,滿足.

(ii)當(dāng)切線與坐標(biāo)軸不垂直時(shí),設(shè)切線為

由圓心到直線距離為

聯(lián)立橢圓方程得 恒成立,設(shè)

滿足 .

(3 )當(dāng)切線與坐標(biāo)軸垂直時(shí)

當(dāng)切線與坐標(biāo)軸不垂直時(shí),由(2)知

.

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

綜上所述,的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了加強(qiáng)對(duì)“新型冠狀病毒”的防控,確保居民在小區(qū)封閉期間生活不受影響,小區(qū)超市采取有力措施保障居民正常生活物資供應(yīng).為做好甲類生活物資的供應(yīng),超市對(duì)社區(qū)居民戶每天對(duì)甲類生活物資的購(gòu)買量進(jìn)行了調(diào)查,得到了以下頻率分布直方圖.

1)從小區(qū)超市某天購(gòu)買甲類生活物資的居民戶中任意選取5.

①若將頻率視為概率,求至少有兩戶購(gòu)買量在(單位:)的概率是多少?

②若抽取的5戶中購(gòu)買量在(單位:)的戶數(shù)為2戶,從5戶中選出3戶進(jìn)行生活情況調(diào)查,記3戶中需求量在(單位:)的戶數(shù)為,求的分布列和期望;

2)將某戶某天購(gòu)買甲類生活物資的量與平均購(gòu)買量比較,當(dāng)超出平均購(gòu)買量不少于時(shí),則稱該居民戶稱為“迫切需求戶”,若從小區(qū)隨機(jī)抽取10戶,且抽到k戶為“迫切需求戶”的可能性最大,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓上不同的兩點(diǎn),的中點(diǎn)坐標(biāo)為

1)證明:直線經(jīng)過(guò)橢圓的右焦點(diǎn).

2)設(shè)直線不經(jīng)過(guò)點(diǎn)且與橢圓相交于,兩點(diǎn),若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過(guò)定點(diǎn),請(qǐng)給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,任意,不等式恒成立時(shí)最大的記為,當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,錯(cuò)誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過(guò)樣本點(diǎn)的中心

C. 在平面直角坐標(biāo)系中到點(diǎn)的距離的和為的點(diǎn)的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和的直角坐標(biāo)方程;

2)直線與曲線,分別交于第一象限內(nèi),兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于兩點(diǎn),且的周長(zhǎng)為.

(1)求拋物線的方程;

(2)若直線過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn),求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng) 時(shí),求函數(shù)圖象在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(3)是否存在實(shí)數(shù),對(duì)任意,恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若恒成立,求實(shí)數(shù)的取值范圍;

2)求證:時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案