【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若過點且斜率為k的直線l與橢圓相交于不同的兩點A,B,試問在x軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

【答案】(1) (2)答案見解析.

【解析】

(1)由題意結(jié)合橢圓的離心率和橢圓的性質(zhì)可得,則橢圓方程為.

(2)假設(shè)在x軸上存在點M(m,0),使是與k無關(guān)的常數(shù),設(shè)直線L方程為,聯(lián)立直線方程與橢圓方程,設(shè),結(jié)合韋達定理可得,設(shè)常數(shù)為t=,討論計算可得,即在x軸上存在點M(),使是與k無關(guān)的常數(shù).

(1)∵橢圓離心率為,,.

又∵橢圓過點(,1),代入橢圓方程,得.

所以.

∴橢圓方程為,即.

(2)x軸上存在點M,使是與k無關(guān)的常數(shù).

證明:假設(shè)在x軸上存在點M(m,0),使是與k無關(guān)的常數(shù),

∵直線L過點C(-1,0)且斜率為k,L方程為,

.

設(shè),則,

=

=

=

=

設(shè)常數(shù)為t,則

整理得對任意的k恒成立,

,解得,

即在x軸上存在點M(),使是與k無關(guān)的常數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故, .

(2)由(1)可知, ,

,可得,

,

,

時, 單調(diào)遞減,且

時, 單調(diào)遞增;且

所以上當單調(diào)遞減,在上單調(diào)遞增,且,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點 與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記函數(shù)的定義域為 )的定義域為.

(1)求;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

列聯(lián)表算得參照附表,得到的正確結(jié)論是(  ).

A. 在犯錯誤的概率不超過0.01的前提下認為愛好該項運動與性別有關(guān)

B. 在犯錯誤的概率不超過0.01的前提下認為愛好該項運動與性別無關(guān)

C. 在犯錯誤的概率不超過0.001的前提下,認為愛好該項運動與性別有關(guān)

D. 在犯錯誤的概率不超過0.001的前提下,認為愛好該項運動與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是正四面體V-ABC的面VBC上一點,點P到平面ABC距離與到點V的距離相等,則動點P的軌跡是( )

A. 直線 B. 拋物線

C. 離心率為的橢圓 D. 離心率為3的雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:①命題,則的逆否命題為假命題:

②命題,則的否命題是,則”;

③若為真命題,為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的可導函數(shù),其導函數(shù)為,且有,則不等式 的解集為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,曲線y=f(x)在點(1,f(1))處的切線方程為y=2.
(I)求a、b的值;
(Ⅱ)當x>1時,不等式f(x)> 恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

同步練習冊答案