【題目】如圖所示,菱形ABCD的頂點(diǎn)A、B在軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在軸的正半軸上,,點(diǎn)A的坐標(biāo)為.
(1)求D點(diǎn)的坐標(biāo).
(2)求直線(xiàn)AC的函數(shù)關(guān)系式.
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為秒.求為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線(xiàn)AC相切?
【答案】(1)(0,2);(2);(3)t=2或6或10或14
【解析】
(1)在Rt△AOD中,根據(jù)OA的長(zhǎng)以及∠BAD的正切值,即可求得OD的長(zhǎng),從而得到D點(diǎn)的坐標(biāo);
(2)根據(jù)點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法可求得直線(xiàn)AD的解析式.
(3)由于點(diǎn)P沿菱形的四邊勻速運(yùn)動(dòng)一周,那么本題要分作四種情況考慮:
在Rt△OAD中,易求得AD的長(zhǎng),也就得到了菱形的邊長(zhǎng),而菱形的對(duì)角線(xiàn)平分一組對(duì)角,那么∠DAC=∠BAC=∠BCA=∠DCA=30°;
①當(dāng)點(diǎn)P在線(xiàn)段AD上時(shí),若⊙P與AC相切,由于∠PAC=30°,那么AP=2R(R為⊙P的半徑),由此可求得AP的長(zhǎng),即可得到t的值;
②③④的解題思路與①完全相同,只不過(guò)在求t值時(shí),方法略有不同.
解:(1)∵點(diǎn)A的坐標(biāo)為(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OAtan60°=2,AD=4,
∴點(diǎn)D的坐標(biāo)為(0,2);
(2)根據(jù)(1)知點(diǎn)D的坐標(biāo)為(0,2)
∵AD=CD,CD∥AB,
∴C(4,2);
設(shè)直線(xiàn)AC的函數(shù)表達(dá)式為y=kx+b(k≠0),
∵A(-2,0),C(4,2),
解得:
∴直線(xiàn)AC的解析式為;
(3)∵四邊形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,
如圖所示:
①點(diǎn)P在AD上與AC相切時(shí),
連接P1E,則P1E⊥AC,P1E=r,
∵∠1=30°,
∴AP1=2r=2,
∴t1=2.
②點(diǎn)P在DC上與AC相切時(shí),
CP2=2r=2,
∴AD+DP2=6,
∴t2=6.
③點(diǎn)P在BC上與AC相切時(shí),
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3=10.
④點(diǎn)P在AB上與AC相切時(shí),
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴當(dāng)t=2或6或10或14時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線(xiàn)AC相切.
故答案為:(1)(0,2);(2);(3)t=2或6或10或14.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開(kāi)發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場(chǎng)前通過(guò)代銷(xiāo)點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷(xiāo)售,售價(jià)為10元/件,工作人員對(duì)銷(xiāo)售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線(xiàn)ABC表示日銷(xiāo)售量y(件)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;
(2)若該節(jié)能產(chǎn)品的日銷(xiāo)售利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式,并求出日銷(xiāo)售利潤(rùn)不超過(guò)1040元的天數(shù)共有多少天?
(3)若5≤x≤17,直接寫(xiě)出第幾天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形內(nèi)接于⊙,是⊙的直徑,過(guò)點(diǎn)的切線(xiàn)與的延長(zhǎng)線(xiàn)相交于點(diǎn).且,連接.
(1)求證:;
(2)過(guò)點(diǎn)作,垂足為,當(dāng)時(shí),求⊙的半徑;
(3)在(2)的條件下,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,是邊上一點(diǎn),,是直線(xiàn)上一動(dòng)點(diǎn),將沿直線(xiàn)折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為,當(dāng)點(diǎn)三點(diǎn)在一條直線(xiàn)上時(shí),的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)圓形轉(zhuǎn)盤(pán),分黑色、白色兩個(gè)區(qū)域.
(1)某人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),對(duì)指針落在黑色區(qū)域或白色區(qū)域進(jìn)行了大量試驗(yàn),得到數(shù)據(jù)如下表:
實(shí)驗(yàn)次數(shù)(次) | 10 | 100 | 2000 | 5000 | 10000 | 50000 | 100000 |
白色區(qū)域次數(shù)(次) | 3 | 34 | 680 | 1600 | 3405 | 16500 | 33000 |
落在白色區(qū)域頻率 | 0.3 | 0.34 | 0.34 | 0.32 | 0.34 | 0.33 | 0.33 |
請(qǐng)你利用上述實(shí)驗(yàn),估計(jì)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤(pán)指針落在白色區(qū)域的概率為___________.(精確到0.01);
(2)若該圓形轉(zhuǎn)盤(pán)白色扇形的圓心角為120度,黑色扇形的圓心角為,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,求指針一次落在白色區(qū)域,另一次落在黑色區(qū)域的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,弦于點(diǎn),過(guò)點(diǎn)作的切線(xiàn)交的延長(zhǎng)線(xiàn)于點(diǎn).
(1)已知,求的大。ㄓ煤的式子表示);
(2)取的中點(diǎn),連接,請(qǐng)補(bǔ)全圖形;若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線(xiàn)上,當(dāng)正方形CDEF的邊長(zhǎng)為2時(shí),陰影部分的面積為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小亮家在點(diǎn)O處,其所在學(xué)校的校園為矩形ABCD,東西長(zhǎng)AD=1000米,南北長(zhǎng)AB=600米.學(xué)校的南正門(mén)在AD的中點(diǎn)E處,B為學(xué)校的西北角門(mén).小亮從家到學(xué)?梢宰唏R路,路線(xiàn)O→M→E(∠M=90°);也可以走沿河觀光路,路線(xiàn)O→B.小亮在D處測(cè)得O位于北偏東30°,在B處測(cè)得O位于北偏東60°小亮從家到學(xué)校的兩條路線(xiàn)中,長(zhǎng)路線(xiàn)比短路線(xiàn)多_____米.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com