【題目】已知,如圖,線段AB,利用無刻度的直尺和圓規(guī),作一個滿足條件的△ABC:①△ABC為直角三角形;②tan∠A= .(注:不要求寫作法,但保留作圖痕跡)
【答案】解:①如圖,延長AB至M,使得AM=3AB;
②過點M作MN⊥AB,且截取MN=AB,連接AN;
③過點B作AB的垂線,交AN于點C.
∴Rt△ABC即為所求
【解析】通過作垂線,構(gòu)造一個直角三角形,把∠A放到這個三角形中,再過B 作垂線構(gòu)造與前一個相似的三角形,可作出滿足條件的三角形.
【考點精析】根據(jù)題目的已知條件,利用解直角三角形的相關(guān)知識可以得到問題的答案,需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點為軸上的動點,點為軸上方的動點,連接,,.
(1)如圖1,當(dāng)點在軸上,且滿足的角平分線與的角平分線交于點,請直接寫出的度數(shù);
(2)如圖2,當(dāng)點在軸上,的角平分線與的角平分線交于點,點在的延長線上,且滿足,求;
(3)如圖3,當(dāng)點在第一象限內(nèi),點是內(nèi)一點,點,分別是線段,上一點,滿足:,,.
以下結(jié)論:①;②平分;③平分;④.
正確的是:________.(請?zhí)顚懻_結(jié)論序號,并選擇一個正確的結(jié)論證明,簡寫證明過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空
如圖,因為∠A=_____(已知),
所以AC∥ED( )
因為∠2=_____(已知),
所以AC∥ED( )
因為∠A+_____=180°(已知),
所以AB∥FD( )
因為AB∥_____(已知),
所以∠2+∠AED=180°( )
因為AC∥_____(已知),
所以∠C=∠3( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2017年“KFC”籃球賽進(jìn)校園活動中,某校甲、乙兩隊進(jìn)行決賽,比賽規(guī)則規(guī)定:兩隊之間進(jìn)行3局比賽,3局比賽必須全部打完,只要贏滿2局的隊為獲勝隊,假如甲、乙兩隊之間每局比賽輸贏的機(jī)會相同,且乙隊已經(jīng)贏得了第1局比賽,那么甲隊獲勝的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中;長方形ABCD的四個頂點分別為;,,.對該長方形及其內(nèi)部的每一個點都進(jìn)行如下操作:把每個點的橫坐標(biāo)都乘以同一個實數(shù),縱坐標(biāo)都乘以3,再將得到的點向右平移個單位,向下平移個單位,得到長方形及其內(nèi)部的點,其中點,,,的對應(yīng)點分別為A’,B’,C’,D’,
(1)點A’的橫坐標(biāo)為______(用含,的式子表示)
(2)若點A’的坐標(biāo)為,點C’的坐標(biāo)為,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于點P,若四邊形ABCD的面積是36,求DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A(0,3),點D為x軸上一動點,以AD為邊在AD的右側(cè)作等腰Rt△ADE,∠ADE=90°,連接OE,則OE的最小值為( )
A. B. C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我校七年級名學(xué)生的體重情況,現(xiàn)從中隨機(jī)抽取名學(xué)生測量體重進(jìn)行統(tǒng)計分析,關(guān)于本次調(diào)查下列說法正確的是( )
A.本次調(diào)查中的總體是七年級名學(xué)生
B.本次調(diào)查中的樣本是隨機(jī)抽取的名學(xué)生的體重
C.本次調(diào)查中的樣本容量是名
D.本次調(diào)查中的個體是七年級的每個學(xué)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞AB上的點O順時針旋轉(zhuǎn)90°,得到△A'B'C',連結(jié)BC'.若BC'∥A'B',則OB的值為( )
A. B. 5C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com