科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,過A,B,D三點的⊙O分別交BC,CD于點E,M,下列結(jié)論:
①DM=CM;②弧AB=弧EM;③⊙O的直徑為2;④AE=AD.
其中正確的結(jié)論有______(填序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,其中AB=4,∠AOC=120°,P為⊙O上的動點,連AP,取AP中點Q,連CQ,則線段CQ的最大值為( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目: 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=3,E是AB邊上一點,EF⊥CE交AD于點F,過點E作∠AEH=∠BEC,交射線FD于點H,交射線CD于點N.
(1)如圖a,當(dāng)點H與點F重合時,求BE的長;
(2)如圖b,當(dāng)點H在線段FD上時,設(shè)BE=x,DN=y,求y與x之間的函數(shù)關(guān)系式,并寫出它的定義域;
(3)連接AC,當(dāng)△FHE與△AEC相似時,求線段DN的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點F在邊AC上,DF與BE相交于點G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=8,BC=6,點D、E分別在BC、AC上,且BD=CE,設(shè)點C關(guān)于DE的對稱點為F,若DF∥AB,則BD的長為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知是邊長為的等邊三角形,動點、同時從、兩點出發(fā),分別沿、方向勻速移動,它們的移動速度都是,當(dāng)點到達點時,、兩點停止運動,設(shè)點的運動時間的秒,解答下列問題.
(1)時,求的面積;
(2)若是直角三角形,求的值;
(3)用表示的面積并判斷能否成立,若能成立,求的值,若不能成立,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目: 來源: 題型:
【題目】王某承包了甲、乙兩片荒山,各栽了100棵楊梅樹,現(xiàn)已全部掛果,為了分析收成情況,他分別從兩山上各采摘了4棵樹上的全部楊梅,每棵樹的產(chǎn)量如折線統(tǒng)計圖.
(1)分別計算甲、乙兩山樣本的平均數(shù),并估計出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標系xOy中的點M和圖形W1,W2給出如下定義:點P為圖形W1上一點,點Q為圖形W2上一點,當(dāng)點M是線段PQ的中點時,稱點M是圖形W1,W2的“中立點”.如果點P(x1,y1),Q(x2,y2),那么“中立點”M的坐標為(,).
已知,點A(-3,0),B(0,4),C(4,0).
(1)連接BC,在點D(,0),E(0,1),F(0,)中,可以成為點A和線段BC的“中立點”的是______;
(2)已知點G(3,0),⊙G的半徑為2,如果直線y=-x+1存在點K可以成為點A和⊙G的“中立點”,求點K的坐標;
(3)以點C為圓心,半徑為2作圓,點N為直線y=2x+4上的一點,如果存在點N,使得y軸上的一點可以成為點N與⊙C的“中立點”,直接寫出點N的橫坐標的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在等邊三角形ABC中,CD為中線,點Q在線段CD上運動,將線段QA繞點Q順時針旋轉(zhuǎn),使得點A的對應(yīng)點E落在射線BC上,連接BQ,設(shè)∠DAQ=α
(0°<α<60°且α≠30°).
(1)當(dāng)0°<α<30°時,
①在圖1中依題意畫出圖形,并求∠BQE(用含α的式子表示);
②探究線段CE,AC,CQ之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)30°<α<60°時,直接寫出線段CE,AC,CQ之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com