科目: 來源: 題型:
【題目】校體育組為了解全校學(xué)生“最喜歡的一項球類項目”,隨機抽取了部分學(xué)生進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖:
請你根據(jù)統(tǒng)計圖回答下列問題:
(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請補全條形統(tǒng)計圖;
(2)請你估計全校500名學(xué)生中最喜歡“排球”項目的有多少名?
(3)在扇形統(tǒng)計圖中,“籃球”部分所對應(yīng)的圓心角是多少度?
(4)籃球教練在制定訓(xùn)練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學(xué)中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.
(1)求拋物線的解析式和直線AC的解析式;
(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;
(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】六一前夕某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝每套A品牌服裝進價比B品牌服裝每套進價多25元,用2000元購進A種服裝數(shù)量是用750元購進B種服裝數(shù)量的2倍,求A、B兩種品牌服裝每套進價分別為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)與反比例函數(shù)(k2≠0)的圖象交于點A(4,1),B(n,-2)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式.
(2)求△AOB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在半⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y = x2+bx+c過點A (-1,2),且關(guān)于y軸對稱,點C與點B(a,0)(a>1)關(guān)于原點對稱,直線AC交拋物線于點D.
(1)求此拋物線的解析式;
(2)連接OA,BD,當(dāng)OA//BD時,求a的值;
(3)若直線AC交拋物線于E,F兩點(點E在點F的左側(cè)),且EA=DF,求直線AC的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,延長CO交AB于點D,記∠A=,∠ABC=β.
(1)求∠ADC的度數(shù)(用含α、β的式子表示);
(2)過點C作CE⊥AB,垂足為E,過點B作BF⊥AC,垂足為F,CE,BF相交于點G,取中點H,連接GH.若α+β=120°,求證:①CG=CO;②GH∥CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商品的現(xiàn)在的售價為每件55元,每星期可賣出200件,如果每件商品的售價每上漲1元,則每星期少賣10件.已知商品進價為每件50元,進行漲價銷售,每件售價是整數(shù)元,且不能高于70元.
(1)每件商品的售價定為多少元時,每星期可獲得利潤最大?最大利潤是多少元?
(2)若在銷售過程中每一件商品有m(m>1)元的其他費用,商家發(fā)現(xiàn)當(dāng)售價每件不低于65元時,每星期的銷售利潤隨定價的增大而減小,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個不透明的盒子里裝有若干個黑、白兩種顏色球,這些球除顏色外其余完全相同.小穎做摸球?qū)嶒,攪勻后,她從盒子里隨機摸出一個球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)若從盒子里隨機摸出一個球,則摸到白球的概率估計值為 (精確到0.1);
(2)若盒中黑球與白球若共有5個,小穎一次摸出兩個球,請計算這兩個球顏色不相同的概率,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com